First-Principles Study on Structural and Electronic Properties of the Armchair GaN Nanoribbons

Article Preview

Abstract:

Calculations have been performed for the structures and electronic properties of GaN nanoribbons with armchair edge (AGaNNRs), using the first-principles projector-augmented wave (PAW) potential within density functional theory (DFT) framework. The lowest unoccupied conduction band (LUCB) and the highest occupied valence band (HOVB) are always separated, representing a semiconductor character for the AGaNNRs. In addition, the majority and minority spin bands are fully superposition and therefore the AGaNNRs are non-magnetic. As the nanoribbons width increase, band gaps of AGaNNRs decrease monotonically and become close to their asymptotic limit of a single layer of GaN sheet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-70

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.W. Son, M.L. Cohen, S.G. Louie. Nature (London) Vol. 444 (2006) p.347

Google Scholar

[2] V. Barone, O. Hod, G.E. Scuseria. Nano Lett Vol. 6 (2006) p.2748

Google Scholar

[3] O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria. Nano Lett Vol. 7 (2007) p.2295

Google Scholar

[4] K.S. Novoselov et al. Nature (London) Vol. 438 (2005) p.197

Google Scholar

[5] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dressehaus. Phys. Rev. B Vol. 54 (1996) p.17954

Google Scholar

[6] C.H. Park, S.G. Louie. Nano Lett Vol. 8 (2008) p.2200

Google Scholar

[7] Z. Zhang, W. Guo. Phys. Rev. B Vol. 77 ( 2008) p.075403

Google Scholar

[8] M. Topsakal, E. Aktürk, S. Ciraci1. Phys. Rev. B Vol. 79 (2009) p.115442

Google Scholar

[9] A.J. Du, Z.H. Zhu, Y. Chen, G.Q. Lu, Sean C. Smith. Chem. Phys. Lett Vol. 469 (2009) p.183

Google Scholar

[10] Y. Ding. J. Ni. Appl. Phys. Lett Vol. 95 (2009) p.083115

Google Scholar

[11] L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, J.G. Hou. J. Chem. Phys Vol. 129 (2008) p.174114

Google Scholar

[12] A.R. Botello-M éndez, F. López-Urías, M. Terrones, H. Terrones. Nano Lett Vol. 8 (2008) p.1562

DOI: 10.1021/nl072511q

Google Scholar

[13] G. Kresse, J. Hafner. Phys. Rev. B Vol. 47 (1993) p.558

Google Scholar

[14] G. Kresse, J. Hafner. Phys Rev. B Vol. 49 (1994) p.14251

Google Scholar

[15] G. Kresse, J. Furthmüller. Phys Rev. B Vol. 54 (1996) p.11169

Google Scholar

[16] G. Kresse, D. Joubert. Phys Rev B Vol. 59 (1999) p.1758

Google Scholar

[17] D.M. Ceperley, B.J. Alder. Phys. Rev. Lett Vol. 45 (1980) p.566

Google Scholar

[18] R. Hafner, D. Spisˇa´k, R. Lorenz, and J. Hafner. Phys. Rev. B Vol. 65 (2002) p.184432

Google Scholar

[19] J.P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett Vol. 77 (1996) p.3865

Google Scholar

[20] Y. Miyamoto, K. Nakada, M. Fujita. Phys. Rev. B Vol. 59 (1999) p.9858

Google Scholar

[21] Y.W. Son, M.L. Cohen, S.G. Louie. Phys. Rev. Lett Vol. 97 (2006) p.216803

Google Scholar

[22] A.J. Du, S.C. Smith, G.Q. Lu. Chem. Phys. Lett Vol. 447 (2007) p.181

Google Scholar