Investigation of Nanomechanical and Aging Properties of Scratch-Resistant Coatings on Polycarbonate through Nanoindentation

Article Preview

Abstract:

Polycarbonate has been widely used in optical and aeronautic areas due to its low weight, transparency and high impact strength. The deposition of hard, transparent and scratch-resistant coatings on polycarbonate can significantly improve the surface mechanical behavior while capitalizing on their desirable bulk characteristics. In this work, nanomechanical properties of transparent scratch-resistant coating on polycarbonate, including nanoindentation and nanoscratch behaviors, were detailed investigated. The significant enhancement of nanomechanical response, containing hardness elastic modulus and friction-resistance, could be obtained after the deposition of the scratch-resistant coating. The results of the systematic investigation of indentation and scratch performance at the nanoscale reveal their significant differences between the surface region and bulk of coatings. Furthermore, the aging properties of scratch-resistant coatings under hygrothermal environment (65°C water for different time) can be followed-up and quantitatively detected in terms of hardness and maximum loading depth changing by nanoindentation technique, which prove to be a new and available method to study aging behavior of thin coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-228

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Dinelli, E. Fabbri, F. Bondioli, TiO2-SiO2 hard coating on polycarbonate substrate by microwave assisted Sol–Gel technique, J. Sol-Gel. Sci. Technol. 58 (2011) 463-469.

DOI: 10.1007/s10971-011-2413-z

Google Scholar

[2] Y.L.W. Linda, E. Chwa, Z. Chen, X.T. Zeng, A study towards improving mechanical properties of Sol–Gel coatings for polycarbonate, Thin. Solid. Films. 516 (2008) 1056-1062.

DOI: 10.1016/j.tsf.2007.06.149

Google Scholar

[3] J.H. Lee, J.S. Cho, S.K. Koh, D. Kim, Improvement of adhesion between plastic substrates and antireflection layers by ion-assisted reaction, Thin. Solid. Films. 449 (2003) 147-151.

DOI: 10.1016/j.tsf.2003.08.060

Google Scholar

[4] S.K. Lee, K.K. Oh, S.Y. Park, J.S. Kim, H. Kim, Scratch resistance and oxygen barrier properties of acrylate-based hybrid coatings on polycarbonate substrate, Korean J. Chem. Eng. 26 (2009) 1550-1555.

DOI: 10.1007/s11814-009-0263-y

Google Scholar

[5] D.K. Hwang, J.H. Moon, Y.G. Shul, K.T. Jung, D.H. Kim, D.W. Lee, Scratch resistant and transparent UV protective coating on polycarbonate, J. Sol-Gel. Sci. Technol. 26 (2003) 783-787.

DOI: 10.1023/a:1020774927773

Google Scholar

[6] J.D. Masso, Evaluation of coating for plastic ophthalmic lenses, SPIE-Proc. 601 (1985) 60-69.

Google Scholar

[7] J.M. Urreaga, M.C. Matias, V. Lorenzo, M.U. Orden, Abrasion resistance in the Tumble test of Sol–Gel hybrid coatings for ophthalmic plastic lenses, Mater Lett. 45 (2000) 293-297.

DOI: 10.1016/s0167-577x(00)00120-8

Google Scholar

[8] M.E.L. Wouters, D.P. Wolfs, M.C. Linde, J.H.P. Hovens, A.H.A. Tinnemans, Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the Sol-Gel method, Prog. Org. Coat. 51 (2004) 312-320.

DOI: 10.1016/j.porgcoat.2004.07.020

Google Scholar

[9] Zhang, H, Zhang, H, Tang, LH, Zhou, LY, Eger, C, Zhang, Z, "Comparative Study on the Optical, Surface Mechanical and Wear Resistant Properties of Transparent Coatings Filled with Pyrogenic and Colloidal Silica Nanoparticles." Compos. Sci. Technol., 71 (4) 471-479 (2011)

DOI: 10.1016/j.compscitech.2010.12.022

Google Scholar

[10] Malzbender, J, de With, G, "The Use of the Indentation Loading Curve to Detect Fracture of Coatings." Surf. Coat. Technol., 137 (1) 72-76 (2001)

DOI: 10.1016/s0257-8972(00)01091-4

Google Scholar

[11] Charitidis, C, Laskarakis, A, Kassavetis, S, Gravalidis, C, Logothetidis, S, "Optical and Nanomechanical Study of Anti-Scratch Layers on Polycarbonate Lenses." Superlattices Microstruct., 36 (1-3) 171-179 (2004)

DOI: 10.1016/j.spmi.2004.08.015

Google Scholar

[12] Wang, ZZ, Gua, P, Zhang, Z, "Indentation and Scratch Behavior of Nano-SiO2/polycarbonate Composite Coating at the Micro/nano-scale." Wear, 269 (1-2) 21-25 (2010)

DOI: 10.1016/j.wear.2010.03.003

Google Scholar

[13] Liu, D, Wu, C, "Adhesion Enhancement of Hard Coatings Deposited on Flexible Plastic Substrates Using an Interfacial Buffer Layer." J. Phys. D: Appl. Phys., 43 (17) 301-175310 (2010)

DOI: 10.1088/0022-3727/43/17/175301

Google Scholar

[14] Cakmak, UD, Schöberl, T, Major, Z, "Nanoindentation of polymers." Meccanica, 47 (2) 707-718 (2012)

DOI: 10.1007/s11012-011-9481-6

Google Scholar

[15] Zhou, T, Nie, P, Lv, HP, Chen, QL, "Assessment of Elastic Properties of Coatings by Three-point Bending and Nanoindentation." J. Coat. Technol. Res., 8 (3) 355-361 (2011)

DOI: 10.1007/s11998-010-9313-y

Google Scholar

[16] Yang, XF, Vang, C, Tallman, DE, Bierwagen, GP, Croll, SG, Rohlik, S, "Weathering Degradation of a Polyurethane Coating." Polym. Degrad. Stabil., 74 (2) 341-351 (2001)

DOI: 10.1016/s0141-3910(01)00166-5

Google Scholar

[17] XF, Li, J, Croll, SG, Tallman, DE, Bierwagen, GP, "Degradation of Low Gloss Polyurethane Aircraft Coatings Under UV and Prohesion Alternating Exposures." Polym. Degrad. Stabil., 80 (1) 51-58 (2003)

DOI: 10.1016/s0141-3910(02)00382-8

Google Scholar

[18] Y, Sellitti, C, Anderson, JM, Hiltner, A, Lodoen, GA, Payet, CR, "An FTIR-attenuated Total Reflectance Investigation of in Vivo Poly(ether urethane) Degradation." J. Appl. Polym. Sci., 46 201-211 (1992)

DOI: 10.1002/app.1992.070460202

Google Scholar

[19] Hong, SG, "The Thermal-oxidative Degradation of an Epoxy Adhesive on Metal Substrates: XPS and RAIR Analyses." Polym. Degrad. Stab., 48 (2) 211-218 (1995)

DOI: 10.1016/0141-3910(95)00042-k

Google Scholar

[20] Yadav, AP, Nishikata, A, Tsuru, T, "Electrochemical Impedance Study on Galvanized Steel Corrosion under Cyclic Wet-dry Conditions--Influence of Time of Wetness." Corrosion Science., 46 (1) 169-181 (2004)

DOI: 10.1016/s0010-938x(03)00130-6

Google Scholar

[21] Yari, H, Moradian, S, Tahmasebi, N, Arefmanesh, M, "The Effect of Weathering on Tribological Properties of an Acrylic Melamine Automotive Nanocomposite." Tribol Lett., 46 (2) 123-130 (2012)

DOI: 10.1007/s11249-012-9928-5

Google Scholar

[22] Briscoe, BJ, Fiori, L, Pelillo, E, "Nano-indentation of Polymeric Surfaces." J. Phys. D: Appl. Phys. 31 (19) 2395-2405 (1998)

DOI: 10.1088/0022-3727/31/19/006

Google Scholar

[23] Oliver, WC, Pharr, GM, "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments." J. Mater. Res., 6 (7) 1564-1583 (1992)

DOI: 10.1557/jmr.1992.1564

Google Scholar

[24] Malzbender, J, Den, Toonder, JMJ, Balkeneddea, AR, De With, G, "Measuring Mechanical Propertie of Coating: a Methodology Applied to Nano-particle-filled Sol-Gel Coating on Glass." Mater. Sci. Eng. R., 36 (2) 47-103 (2002)

DOI: 10.1016/s0927-796x(01)00040-7

Google Scholar