A Simple and High-Performance Hydrazine Sensor Based on Graphene Nano Platelets Supported Metal Nanoparticles

Article Preview

Abstract:

Gold-palladium nanoparticles (AuPd NPs) were prepared on a layer of graphene (GR) film by potentiostatic electrodeposition from a mixture electrolyte of HAuCl4 and H2PdCl4 to fabricate the AuPd NPs/graphene/glass carbon electrode (AuPd/GR/GCE). The synthesized composite has been characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). Electrocatalytic oxidation of hydrazine on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, the results showed that the AuPd NPs high catalysis for the electrochemical oxidation of hydrazine and the excellent conductivity of graphene. Electrocatalytic activity of the modified electrode was investigated for the oxidation of hydrazine in 0.1 M phosphate buffer solutions (pH=6.0). Under the optimized conditions, the oxidation current of hydrazine was linear to its concentration in the range of 2185 μM, and the estimated detection limit was 0.2 μM (S/N =3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-251

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mohammad Bagher Gholivand, Azadeh Azadbakht, Electrochimica Acta 56 (2011) 10044.

Google Scholar

[2] M. George, K.S. Nagaraja, N. Balasubramanian, Talanta 75 (2008) 27.

Google Scholar

[3] M. Mori, K. Tanaka, Q.Xu, M. Ikedo, H. Taoda, W. Hu, J. Chromatogr. 1039 (2004) 135.

Google Scholar

[4] Y.A. Gawargious, A. Beseda, Talanta 22 (1975) 757.

Google Scholar

[5] A. Safavi, M.A. Karimi, Talanta 58 (2002) 785.

Google Scholar

[6] R. Gilbert, R. Rioux, S.E. Saheb, Anal. Chem. 56(1984) 106.

Google Scholar

[7] P. Avouris, Perebeinos, Nat. Nanotechnol. 2 (2007) 605.

Google Scholar

[8] S. Watcharotone, D.A. Dikin, S. Stankovich, I. Jung, G.H. Dommett, R. Piner, S.E. Wu, G. Evmrenenko,  S.F. Chen, C.P. Liu, S.T. Nguyen, R.S. Ruoff, Nano Lett. 7 (2007) 1888.

DOI: 10.1021/nl070477+

Google Scholar

[9] Meryl D. Stoller, Sungjin Park, Y.W. Zhu, Jinho An, R.S. Ruoff, Nano Lett. 8 (2007) 3498.

Google Scholar

[10] Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113 (2009) 13103.

Google Scholar

[11] D.W. Wang, F. Li, J.P. Zhao, W.C. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 93 (2009) 1745.

Google Scholar

[12] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, Nano Lett. 8 (2008) 2277.

Google Scholar

[13] R. Kou, Y.Y. Shao, D.H. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C.M. Wang, Y.H. Lin, Y. Wang, I.A. Aksay, J. Liu, Electrochem. Commun. 11 (2009) 954.

DOI: 10.1016/j.elecom.2009.02.033

Google Scholar

[14] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano Lett. 9 (2009) 2255.

DOI: 10.1021/nl900397t

Google Scholar

[15] Y.C. Si, E.T. Samulski, Chem. Mater. 20 (2008) 6792.

Google Scholar

[16] F.U. Renner, A. Stierle, H. Dosch, D.M. Kolb, T.L. Lee, J. Zegenhagen, Nature 439 (2006) 707.

DOI: 10.1038/nature04465

Google Scholar

[17] M. Tominaga, Y. Taema, I. Taniguchi, J. Electroanal. Chem. 624 (2008) 1.

Google Scholar

[18] D.Wang, Y. Li, Advanced Materials 23 (2011) 1044.

Google Scholar

[19] Z. Huang, H. Zhou, C. Li, F. Zeng, C. Fu, Y. Kuang, Journal of Materials Chemistry 22 (2012) 1781.

Google Scholar