A Novel Solvothermal Route to Nanocrystalline Sn4P3 with Red Phosphorous as Raw Material

Article Preview

Abstract:

Nanocrystalline tin phosphide Sn4P3 was synthesized from red phosphorus and tin chloride SnCl22H2O by a low temperature (200°C) solvothermal reaction in ethanolamine for only 10 hours. The important parameters of solvothermal processmolar ratio of initial components (P/Sn), temperature and duration were investigated. The phase, composition and morphology of the products were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The ideal solvothermal conditions to synthesize pure and nanocrystallined Sn4P3 were summarized in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-245

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Elayaraja Muthuswamy, Galbokka H. Layan Savithra, Stephanie L. Brock. Synthetic Levers Enabling Independent Control of Phase, Size, and Morphology in Nickel Phosphide Nanoparticles. ACS Nano, 5 (2011) 2402-2411.

DOI: 10.1021/nn1033357

Google Scholar

[2] Elayaraja Muthuswamy, Parashu Ram Kharel, Gavin Lawes, Stephanie L. Brock. Control of Phase in Phosphide Nanoparticles Produced by Metal Nanoparticle Transformation: Fe2P and FeP. ACS Nano, 3 (2009) 2383-2393.

DOI: 10.1021/nn900574r

Google Scholar

[3] Stephanie L. Brock, Keerthi Senevirathne. Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications. Journal of Solid State Chemistry, 181 (2008) 1552-1559.

DOI: 10.1016/j.jssc.2008.03.012

Google Scholar

[4] S. Rundqvist, New metal-rich phosphides of niobium, tantalum, and tungsten, Nature, 211(1966) 847.

DOI: 10.1038/211847a0

Google Scholar

[5] H. Fjellvag, A. Kjekshus, A.F. Andresen, Magnetic and structural properties of transition metal substituted MnP. III. Mn1–tFetP (0.00 ≤ t ≤ 0.30), Acta Chem. Scand. A, 38 (1984) 711.

DOI: 10.3891/acta.chem.scand.38a-0711

Google Scholar

[6] A.T. Rowley, I.P. Parkin, Convenient synthesis of lanthanide and mixed lanthanide phosphides by solid-state routes involving sodium phosphide, J. Mater. Chem., 31 (993) 689.

DOI: 10.1039/jm9930300689

Google Scholar

[7] K.A. Gingerich, Vaporization behavior and phosphorus decomposition pressures of tungsten monophosphide, J. Phys. Chem., 68 (1964) 768.

DOI: 10.1021/j100786a009

Google Scholar

[8] W. Li, B. Dhandapani, S.T. Oyama, Molybdenum phosphide: a novel catalyst for hydrodenitrogenation, Chem. Lett., 3 (1998) 207-208.

DOI: 10.1246/cl.1998.207

Google Scholar

[9] T.S. Lewkebandara, J.W. Proscia, C.H. Winter, Precursor for the low temperature deposition of titanium phosphide films, Chem. Mater., 7 (1995) 1053.

DOI: 10.1021/cm00054a003

Google Scholar

[10] N. Scho¨nberg, An X-ray investigation of transition metal phosphides, Acta Chem. Scand., 8( 1954) 226.

Google Scholar

[11] Kirill A. Kovnir , Yury V. Kolen'ko. A facile high-yield solvothermal route to tin phosphide Sn4P3. Journal of Solid State Chemistry, 179 (2006) 3756-3762.

DOI: 10.1016/j.jssc.2006.08.012

Google Scholar

[12] Shuling Liu, Xinzheng Liu, Liqiang Xu, Yitai Qian, Xicheng Ma. Controlled synthesis and characterization of nickel phosphide nanocrystal. Journal of Crystal Growth., 304 (2007) 430-434.

DOI: 10.1016/j.jcrysgro.2007.03.002

Google Scholar

[13] Hongwei Hou, Qi Peng, Shuyuan Zhang, Qixun Guo, Yi Xie. A "User-Friendly" Chemical Approach Towards Paramagnetic Cobalt Phosphide Hollow Structures: Preparation, Characterization, and Formation Mechanism of Co2P Hollow Spheres and Tubes. European Journal of Inorganic Chemistry, 2005 (2005) 2625-2630.

DOI: 10.1002/ejic.200500033

Google Scholar

[14] Yi Xie, Huilan Su, Bin Li, Yitai Qian. Solvothermal preparation of tin phosphide nanorods. Materials Research Bulletin, 35 (2000) 675-680.

DOI: 10.1016/s0025-5408(00)00263-4

Google Scholar

[15] H.L Su, Y Xie, B Li, X.M Liu, Y.T Qiana. A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P. Solid State Ionics, 122 (1999) 157-160.

DOI: 10.1016/s0167-2738(99)00049-1

Google Scholar

[16] X.F. Qian, X.M. Zhang, C. Wang, W.Z. Wang, Y.T. Qian. A New Way to Prepare Nanocrystalline Dinickel Phosphide. Materials Research Bulletin, 33 (1998) 669-672.

DOI: 10.1016/s0025-5408(98)00020-8

Google Scholar

[17] Gu Yunle,Guo Fan,Qian Yitai. A solvothermal synthesis of ultra-fine iron phosphide. Materials Research Bulletin, 37 (2002) 1101-1105

DOI: 10.1016/s0025-5408(02)00749-3

Google Scholar

[18] H.L.Su, Y.Xie, B.Li, X.M. Liu, and Y.T. Qian. A Novel One-Step Solvothermal Route to Nanocrystalline Sn4P3. Journal of Solid State Chemistry, 146(1999) 110-113.

DOI: 10.1006/jssc.1999.8315

Google Scholar

[19] Bo Wang, Xiang Huang .Hydrothermal synthesis method of nickel phosphide nanoparticles. Appl Nanosci., 2 ( 2012) 423-427.

DOI: 10.1007/s13204-012-0057-0

Google Scholar

[20] Zongyi Liu, Xiang Huang , Zhibin Zhu, Jinhui Dai. A simple mild hydrothermal route for the synthesis of nickel phosphide powders. Ceramics International, 36 (2010) 1155-1158.

DOI: 10.1016/j.ceramint.2009.12.015

Google Scholar

[21] Xiang Huang, Zongyi Liu, Jinhui Dai, Zhibin Zhu, A hydrothermal method for the synthesis of phosphides. 2009, CN Patent ZL200910018549.2

Google Scholar

[22] Bo Wang, Xiang Huang . Hydrothermal synthesis of cobalt–nickel bimetallic phosphides. Appl Nanosci., 2 (20124) 481-485.

DOI: 10.1007/s13204-012-0062-3

Google Scholar

[23] He Huang, Xiang Huang , Zhibin Zhu, Jinhui Dai .Hydrothermal synthesis of cobalt phosphide nanoparticles. Ceramics International, 38(2012) 1713-1715.

DOI: 10.1016/j.ceramint.2011.09.001

Google Scholar