A High-Performance Bimetallic Pd-Cu Nanoparticles Membrane on Glassy Carbon Electrode for Formic Acid Oxidation

Article Preview

Abstract:

The Palladium-copper nanoparticles (PdCu NPs) have been prepared by potentiostatic electrodeposition from a mixture electrolyte of H2PdCl4 and CuSO4,then placed the electrode in sulfuric acid using cyclic voltammetry sweep a few laps to fabricate the PdCu NPs/glass carbon electrode (Pd-Cu/GCE). The modified electrode electrochemical properties of a preliminary study found that this modified electrode has good stability and electrochemical activity, experiments show that formic aicd has good voltammetric response of the electrode. The electrical activity of the formic acid in the Pd/GCE is lower than that in the Pd-Cu/GCE, this is due to the synergistic effect of the bimetal. When the Cu content is increased gradually in H2PdCl4 and CuSO4 a mixed solution, the formic acid oxidation peak currentlower, because Cu has no electrocatalytic activity for formic acid oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-269

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.S. Kim, R.D. Morgan, B. Gurau, A miniature direct of formic acid fule cell battery. J. Power Sources. 188 (2009) 118-121.

DOI: 10.1016/j.jpowsour.2008.11.082

Google Scholar

[2] W. Rheey, S. Ha, R.I. Masel, Crossover of formic acid through Nation(R) membranes. J. Power Sources. 117(1-2) (2003) 35-38.

DOI: 10.1016/s0378-7753(03)00352-5

Google Scholar

[3] M.L. Kaszewski, A. Czerwinski, Anodic Oxidation of Pd Alloys with Pt and Rh. Journal of Alloys and Compounds. 473 (2009) 220-226Y.

DOI: 10.1016/j.jallcom.2008.05.037

Google Scholar

[4] P. Waszczuk, M.B. Thomas, C. Rice, R.I. Masel, A. Wieckowski, A Nanoparticle Catalyst with Superior Activity for Electrooxidation of formic acid. Electrochemistry Communications. 4 (2002) 599-603.

DOI: 10.1016/s1388-2481(02)00386-7

Google Scholar

[5] C. Rice, S. Ha, R.I. Masel, A. Wieckowski, Catalysts for Direct Formic Acid Fuel Cells. J. Power Sources. 115 (2003) 229-235.

DOI: 10.1016/s0378-7753(03)00026-0

Google Scholar

[6] G.Y. Gao, D.J. Guo, H.L. Li, Electrocatalytic Oxidation of Formaldehyde on Palladium nanoparticles Supported on Multi-walled Carbon Nanotubes. J. Power Sources. 162 (2006) 1094-1098

DOI: 10.1016/j.jpowsour.2006.07.057

Google Scholar

[7] L. Dai, S.Z. Zou, Enhanced formic acid oxidation on Cu-Pd nanoparticles. J. Power Sources. 196 (2011) 9369-9372.

DOI: 10.1016/j.jpowsour.2011.08.004

Google Scholar

[8] F.U. Renner, A. Stierle, H. Dosch, D. M. Kolb, T.L. Lee, J. Zegenhagen, Nature. 439 (2006) 707.

DOI: 10.1038/nature04465

Google Scholar

[9] M. Tominaga, Y. Taema, I. Taniguchi, J. Electroanal Chem. 624 (2008) 1

Google Scholar

[10] D. Wang, Y. Li, Advanced Materials. 23 (2011) 1044.

Google Scholar