Electrical Transport Properties of Single SiC NW-FET

Article Preview

Abstract:

A single SiC NW-FET (nanowire field effect transistor) was fabricated by FIB (Focus-Ion-Beam) method and the photo-electric properties of the device including I-V characteristic, transfer characteristic and time response et.al. were studied in this paper. SiC NWs (NWs) were prepared by pyrolysis of a polymer precursor with ferrocene as the catalyst by a CVD route. The NWs were suspended in ethanol by ultrasonic, then sprayed onto a silicon wafer with 300nm silicon oxide. Pt electrodes were deposited directly by FEI NanoLab 600i along with the SiC NW on silicon wafer. The transfer characteristic of the device shows that the SiC NW is a n-type semiconductor and photoelectrical measurements of the device show an rapid change of voltage when applied a constant current and explored the device to 254nm UV light. The mechanism of photo-electric properties are discussed in the last. Our results show that the single SiC NW FET could be applied to a harsh environment due to its own excellent electrical and optical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Zekentes and K. Rogdakis, SiC nanowires: material and devices, Journal of Physics D: Applied Physics.44 (2011) 133001-(17).

DOI: 10.1088/0022-3727/44/13/133001

Google Scholar

[2] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, Single Gallium nitride nanowire lasers, nature materials.1 (2002) 106-110.

DOI: 10.1038/nmat728

Google Scholar

[3] E. W. Wong, P. E. Sheehan and C. M. Lieber, Nanobeam mechanisms: elas- ticity, strength and toughness of nanorods and nanotubes, Science.277 (1997) 1971-1975.

DOI: 10.1126/science.277.5334.1971

Google Scholar

[4] Z. W. Pan, H. L. Lai, C. K. Frederick, X. F. Duan, W. Y. Zhou, W. S. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee and S. S. Xie, Oriented silicon carbide nanowires: synthesis and field emission properties, Adv. Mater.12 (2000) 1186-1190.

DOI: 10.1002/1521-4095(200008)12:16<1186::aid-adma1186>3.0.co;2-f

Google Scholar

[5] T. Seeger, P. Kohler-Redlich and M. Ruhle, Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge, Adv.Mater.12 (2000) 279-282.

DOI: 10.1002/(sici)1521-4095(200002)12:4<279::aid-adma279>3.0.co;2-1

Google Scholar

[6] R. B. Wu, B. S. Li, M. X. Gao, J. J. Chen, Q. M. Zhu and Y. Pan, Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties Nanotechnology.19 (2008) 335602-(8).

DOI: 10.1088/0957-4484/19/33/335602

Google Scholar

[7] F. K. Cai, A. X. Zhang, J. L. Yin, H. F. Wang and X. H. Yuan, Preparation, characterization and photoluminescence properties of ultra long SiC/SiOx nanocables, Applied Physics A.91 (2008) 579-584.

DOI: 10.1007/s00339-008-4495-1

Google Scholar

[8] G. Li, X. Li, Z. Chen, J. Wang, H. Wang and R. Che, Large Areas of Centimeters-Long SiC Nanowires Synthesized by Pyrolysis of a Polymer Precursor by a CVD Route, J. Phys. Chem. C.113 (2009) 17655-17660.

DOI: 10.1021/jp904277f

Google Scholar

[9] K. Rogdakis, S. Lee, M. Bescond, S. Lee, E. Bano and K. Zekentes, 3C-Silicon Carbide Nanowire FET: An Experimental and Theoretical Approach, IEEE Transactions on Electron Devices.55 (2008) 1970-1976.

DOI: 10.1109/ted.2008.926667

Google Scholar

[10] H. Seong, H. Choi, S. Lee, J. Lee and D. Choi, Optical and electrical transport properties in silicon carbide nanowires, Applied Physics Letters.85 (2004) 1256-1258.

DOI: 10.1063/1.1781749

Google Scholar

[11] H. K. Seong, H. J. Choi, S. K. Lee, J. I. Lee and D. J. choi, Fabrication and electrical transport properties of CVD grown silicon carbide nanowires for field effect transistor, Mater. Sci.Forum.527-529 (2006) 771-774.

DOI: 10.4028/www.scientific.net/msf.527-529.771

Google Scholar

[12] W. M. Zhou, X.Liu and Y.Zhang, Field-effect transistor based on β-SiC nanowire FET, IEEE Transactions on Electron Devices Lett.27 (2006) 463-466.

Google Scholar

[13] W. Zhou, X. Liu and Y.Zhang, Simple approach to β-SiC nanowires: Synthesis, optical, and electrical properties, Appl. Phys. Lett.89 (2006) 223124-223121-223124-3.

Google Scholar

[14] G. Peng, Y. Zhou, Y. He, X. Yu and G. Li, Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires, Science China.55 (2012) 1168-1171.

DOI: 10.1007/s11433-012-4790-x

Google Scholar

[15] W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo and W. Imler, Activation energies of Si donors in GaN Appl. Phys. Lett.68 (1996) 3144-3146.

DOI: 10.1063/1.115805

Google Scholar

[16] E. H. Rhoderick and R. H. Williams (1988). Metal-semicaonductor contact, Oxford.

Google Scholar

[17] S. M. Sze (1981). Physics of Semiconductor Devices. New York.

Google Scholar

[18] L. Kolaklieva and R. Kakanakov (2009). Ohmic contacts for High Power and Hagh Temperature Microelectronics. Bulgaria, Bulgarian Academy of Science.

DOI: 10.5772/7017

Google Scholar

[19] K. Huang, Q. Zhang, F. Yang and D. He, Ultraviolet Photoconductance of a Single hexagonal WO3 Nanowire, Nano Res.3 (2010) 281-287.

DOI: 10.1007/s12274-010-1031-3

Google Scholar