Fabrication, Characteristics and Application in Dye-Sensitized Solar Cell of Vertically Alligned ZnO Nanorod Arrays Guided with Polyethyleneimine via Hydrothermal Method

Article Preview

Abstract:

.A series of vertically aligned ZnO nanorod-array films are grown on fluorine-doped tin oxide (F: SnO2, FTO) coated glass substrates by the solution-based chemical process. The effect of polyethyleneimine (PEI) adding in seed and growth solution on the structure, morphology, UV-Vis absorption spectra and photovoltaic properties of ZnO nanorod array films, has been analyzed. The XRD and SEM results showed that the ZnO nanorod have the hexagonal wurtzite structure with the (002) direction normal to the substrate. It was observed that with the addition of PEI in growth solution, the ZnO nanorods become smaller in diameter and longer in length i.e. greatly enhance their surface area, leading to improve dye adsorption and photovoltaic performance of DSSCs. The efficiency of ZnO nanorod-based DSSC with PEI in growth solution was on average 1.18 % for film A4, which is 84 % higher than for ZnO nanorod-based DSSC without PEI in growth solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-125

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Law, M. Greene, L. Jonhnson, J. C. Saykally, R. Yang, P. Nat. Mater. 4 (2005) 455.

Google Scholar

[2] Lu, Y. Dajani, I. A. Knize, R. J. Electron. Lett. 42 (2006) 1309.

Google Scholar

[3] Kang, B. S. Ren, F. Heo, Y. W. Tien, L. C. Norton, D. P. Pearton, S. J. Appl. Phys. Lett. 86 (2005) 112105.

Google Scholar

[4] Huang, M. H. Mao, S. Feick, H. Yan, H. Wu, Y. Kind, E. Russo, R. Yang, P. Science 292 (2001) 1897.

Google Scholar

[5] Wang, Z. L. Song, J. H. Science 312 (2006) 242.

Google Scholar

[6] Suh, D. I. Lee, S. Y. Hyung, J. H. Kim, T. H. Lee, S. K. J. Phys.Chem. C 112 (2008) 1276.

Google Scholar

[7] Huang, M. H. Wu, Y. Feich, H. Tran, N. Weber, E. Yang, P. Ad .Mater. 13 (2001) 113.

Google Scholar

[8] Pan, Z. W. Dai, Z. R. Wang, Z. L. Science 291 (2001) 1947.

Google Scholar

[9] Wu, J. J. Liu, S. C. Ad . Mater. 14 (2002) 215.

Google Scholar

[10] Park, W. I. Kim, D. H. Jung, S.-W. Yi, G.-Ch. Appl. Phys. Lett. 80 (2002) 4232.

Google Scholar

[11] Luo, L. Sosnowchik, B. D. Lin, L. W. Appl. Phys. Lett.90 (2007) 093101.

Google Scholar

[12] Vayssieres, L. Keis, K. Hagfeldt, A. Lindquist, S. Chem. Mater. 13 (2001) 4395.

Google Scholar

[13] Greene, L. Law, M. Goldberger, J. Kim, F. Johnson, J. Zhang, P. Angew. Chem. Int. Ed.42 (2003) 3031.

Google Scholar

[14] Jung, S. H. Oh, E. Lee, K. H. Park, W. Jeong, S. H. Ad . Mater.19 (2007) 749.

Google Scholar

[15] C. Xu, P. Shin, L. Cao, D. Gao, J. Phys. Chem. C 114 (2010) 125–129.

Google Scholar

[16] Tak, Y. Yong, K. J. Phys. Chem. 109 (2005) 19263.

Google Scholar

[17] Tian, Z. R. Voigt, J. A. Liu, J. Mckenzie, M. A. Konishi, H. Xu, H. F. Nature.2 (2003) 821.

Google Scholar

[18] Zhou, Y. Wu, W. B. Hu, G. D. Wu, H. T. Cui, S. G. Mater. Res.Bull. 43 (2007) 2113.

Google Scholar

[19] Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17 (2005) 1001.

Google Scholar

[20] J. G. Chen, C. X. Guo, L. L. Zhang, J. T. Hu, P. Guo Chin. J. Luminescence, 26 (2005) 83-88.

Google Scholar

[21] Y. Tong, Y. Liu, L. Dong, D. Zhao, J. Zhang, D. Shen, X. Fan J. Phys. Chem. B 110 (2006) 20263–20267.

Google Scholar

[22] Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li, Nano Lett.7 (2007) 3723-3728.

Google Scholar

[23] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorg. Chem. 45 (2006) 7535-7543.

DOI: 10.1021/ic0601900

Google Scholar

[24] C.Y. Jiang, X.W. Sun, G. Q. Lo, D.L. Kwong, J.X. Wang, Appl. Phys. Lett. 26 (2007) 90.

Google Scholar