Formation of Polymer Brushes with Diblock Copolymers on a Planar Surface

Article Preview

Abstract:

We use molecular dynamics simulations method to investigate the behavior characteristics of AB diblock copolymers that are adsorbed on a planar surface. Adsorption density has been distinguished, depending on the adsorption manner of A-block on the (100) surface and formation of brushes. It is examined in detail that conformational behavior of the brushes affects the adsorption density. In addition, we make a comparison of linear brush with length ratio of the A-block to the chain, in the cases of the fixed length of chain and the fixed length of A-block, respectively. The result shows that the adsorption density is strongly affected by the length ratio of the A-block to the chain. And our findings can be used as a guide for fabrication and preparation of actual synthetic polymer brushes on a solid surface by the approach of physical adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-149

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Linse, Interaction between colloids with grafted diblock polyampholytes, J. Chem. Phys., 126 (2007), 114903.

DOI: 10.1063/1.2436874

Google Scholar

[2] X. Ding, C. Yang, T. P. Lim, L. Y. Hsu, A. C. Engler, J. L. Hedrick, Y. Y. Yang, Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers, Biomaterials, 33 (2012), 6593-6603.

DOI: 10.1016/j.biomaterials.2012.06.001

Google Scholar

[3] O. Hollmann, C. Reichhart, C. Czeslik, Kinetics of protein adsorption at a poly(acrylic acid) brush studied by surface plasmon resonance spectroscopy, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 222 (2008), 205-215.

DOI: 10.1524/zpch.2008.222.1.205

Google Scholar

[4] X. Zhang, A. B. Sushkov, C. J. Metting, S. Fackler, H. D. Drew, R. M. Briber, Silicon Patterning Using Self-assembled PS-b-PAA Diblock Copolymer Masks for Black Silicon Fabrication via Plasma Etching, Plasma Process. Polym., 9 (2012), 968-974.

DOI: 10.1002/ppap.201100198

Google Scholar

[5] B. Fang, S. Gon, M. Park, K. N. Kumar, V. M. Rotello, K. Nusslein, M. M. Santore, Bacterial adhesion on hybrid cationic nanoparticle-polymer brush surfaces: Ionic strength tunes capture from monovalent to multivalent binding, Colloid Surf. B-Biointerfaces, 87 (2011), 109-115.

DOI: 10.1016/j.colsurfb.2011.05.010

Google Scholar

[6] S. C. Kim, B. S. Seong, Adsorption of the heteronuclear AB diblock copolymers confined in the slitlike pores, The Journal of chemical physics, 132 (2010), 024705-024705-024709.

DOI: 10.1063/1.3292003

Google Scholar

[7] C. Suchomski, C. Reitz, K. Brezesinski, C. T. de Sousa, M. Rohnke, K. Iimura, J. P. E. de Araujo, T. Brezesinski, Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr2O4 and MCr2-xFexO4 (M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes, Chem. Mat., 24 (2012), 155-165.

DOI: 10.1021/cm2026043

Google Scholar

[8] R. Jiang, B. H. Li, Z. Wang, Y. H. Yin, A. C. Shi, Self-Assembled Morphologies of Diblock Copolymer Brushes in Poor Solvents, Macromolecules, 45 (2012), 4920-4931.

DOI: 10.1021/ma300564r

Google Scholar

[9] A. Striolo, Surface adsorption of colloidal brushes at good solvents conditions, J. Chem. Phys., 137 (2012).

Google Scholar

[10] E. Bittrich, S. Burkert, M. Muller, K. J. Eichhorn, M. Stamm, P. Uhlmann, Temperature-Sensitive Swelling of Poly(N-isopropylacrylamide) Brushes with Low Molecular Weight and Grafting Density, Langmuir, 28 (2012), 3439-3448.

DOI: 10.1021/la204230a

Google Scholar

[11] S. Tugulu, P. Silacci, N. Stergiopulos, H. A. Klok, RGD - Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells, Biomaterials, 28 (2007), 2536-2546.

DOI: 10.1016/j.biomaterials.2007.02.006

Google Scholar

[12] K. Yu, Y. C. Han, Effect of block sequence and block length on the stimuli-responsive behavior of polyampholyte brushes: hydrogen bonding and electrostatic interaction as the driving force for surface rearrangement, Soft Matter, 5 (2009), 759-768.

DOI: 10.1039/b805611k

Google Scholar

[13] S. Tugulu, K. Lowe, D. Scharnweber, F. Schlottig, Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment, J. Mater. Sci.-Mater. Med., 21 (2010), 2751-2763.

DOI: 10.1007/s10856-010-4138-x

Google Scholar

[14] A. Ramirez-Hernandez, G. L. Liu, P. F. Nealey, J. J. de Pablo, Symmetric Diblock Copolymers Confined by Two Nanopatterned Surfaces, Macromolecules, 45 (2012), 2588-2596.

DOI: 10.1021/ma2026594

Google Scholar

[15] F. Tessier, G. W. Slater, Modulation of electroosmotic flow strength with end-grafted polymer chains, Macromolecules, 39 (2006), 1250-1260.

DOI: 10.1021/ma0522211

Google Scholar

[16] K. Kremer, G. S. Grest, Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation, J. Chem. Phys., 92 (1990), 5057.

DOI: 10.1063/1.458541

Google Scholar

[17] M. Borówko, W. Rzysko, S. Sokolowski, T. Staszewski, Adsorption of short heteropolymers in slitlike pores, J. Coll. Inter. Sci., 314 (2007), 349-357.

DOI: 10.1016/j.jcis.2007.05.076

Google Scholar

[18] Y. K. Jhon, S. Arifuzzaman, A. E. Özçam, D. J. Kiserow, J. Genzer, Formation of Polyampholyte Brushes via Controlled Radical Polymerization and Their Assembly in Solution, Langmuir, 28 (2011), 872-882.

DOI: 10.1021/la203697a

Google Scholar

[19] M. R. Tomlinson, J. Genzer, Formation and properties of multivariant assemblies of surface-tethered diblock and triblock copolymers, Polymer, 49 (2008), 4837-4845.

DOI: 10.1016/j.polymer.2008.08.048

Google Scholar