[1]
Vegard Kippe, Jørg E. Aarnes, Knut-Andreas Lie, A comparison of multiscale methods for elliptic problems in porous media flow, Comput Geosci, 12, 377-398 (2008)
DOI: 10.1007/s10596-007-9074-6
Google Scholar
[2]
Aarnes, J. and Y. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows, SIAM Journal on Scientific Computing, 30(5), 2319-2339 (2008)
DOI: 10.1137/07070108x
Google Scholar
[3]
Chu, C. C., Graham, I. G., Hou, T. Y., A new multiscale finite element method for high-contrast elliptic interface problems, Mathematics of Computation (MCOM), 79 (272), 1915-1955 (2010)
DOI: 10.1090/s0025-5718-2010-02372-5
Google Scholar
[4]
S. Krogstad, K.¨CA. Lie, H. M. Nilsen, J. R. Natvig, B. Skaflestad, and J. E. Aarnes, SINTEF, A Multiscale Mixed Finite-Element Solver for Three-Phase Black-Oil Flow, Society of Petroleum Engineers. SPE 118993,1-13(2009)
DOI: 10.2118/118993-ms
Google Scholar
[5]
Yalchin Efendiev, Thomas Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Springer. 27-33(2009)
Google Scholar
[6]
Xiang Ma,Nicholas Zabaras, A stochastic mixed finite element heterogeneous multiscale method for flow in porous media, Journal of Computational Physics, 230,4696-4722(2011)
DOI: 10.1016/j.jcp.2011.03.001
Google Scholar
[7]
Todd Arbogast, Mixed Multiscale Methods for Heterogeneous Elliptic Problems, Lecture Notes in Computational Science and Engineering, 83,243-283(2012)
DOI: 10.1007/978-3-642-22061-6_8
Google Scholar
[8]
Wang Bingxian, Xu Dinghua, Ge Meibao, On the Variational Adjoint Method and Numerical Simulation for A Class of Inverse Problems for Nonlinear Parabolic Equations(in Chinese), Journal of Ningxia University(Natural Science Edition), 29(1):9-13(2008)
Google Scholar
[9]
Huang S X, Han W, Application of regularization ideas in ill-posed problems of ocean variational data assimilation with local observations, International Conference on Inverse Problems, Hongkong (2002)
Google Scholar
[10]
Wang Yanfei, Computational Methods for Inverse Problems and Their Applications(in Chinese), Beijing, Higher Education Press (2007)
Google Scholar
[11]
WANG Ze-wen, XU Ding-hua, A Regularization Method of Inverse Problem for Surface Heat Flux(in Chinese), Journal of Nanchang University(Natural Science), 29(3):261-265(2005)
Google Scholar
[12]
HE Xinguang , REN Li, Adaptive multiscale finite element method for unsaturated flow in heterogeneous porous media I. Numerical scheme(in Chinese), SHUILI XUEBAO, 40(1),38- 45(2009)
Google Scholar
[13]
XUE Yu-qun, YE Shu-jun, XIE Chun-hong, ZHANG Yun, Application of multi-scale finite element method to simulation of groundwater flow(in Chinese), SHUILI XUEBAO,7,7-13(2004)
Google Scholar
[14]
Aixiang Huang, TianXiao Zhou, Theories and Methods of Finite Element(I)(in Chinese), Science Press, Beijing, 164-167(2009)
Google Scholar
[15]
Yu Changming, Numerical Analysis of Heat and Mass Transfer for Porous Materials(in Chinese), TsingHua University Press,Beijing(2011)
Google Scholar
[16]
Curtis R. Vogel, Computational Methods for Inverse Problem, TsingHua University Press, Beijing (2011)
Google Scholar
[17]
Tang-Wei Liu, He-Hua Xu, and Xue-Lin Qiu, A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System, ISRN Applied Mathematics, Volume 2012 (2012), 1-10
DOI: 10.5402/2012/202893
Google Scholar