Nd:YAG Laser Welding between Ti and PET Using Pulse Shaping

Article Preview

Abstract:

PET-Ti composites have already been preliminarily used in the medical area due to the benefit of moderate biocompatibility of PET and the excellent mechanical properties of Ti. The connection of these materials always utilizes various technologies. Comparing to other methods, laser joining has the ability to achieve a clean weld and heat up materials in a spatially localized area only the material parts to be welded. This article describes how pulse shape, peak power and pulse-width affect the welding quality. And, make a conclusion that pulsed laser shapes, no matter with ramped-down waveform or ramped-up waveform, can be used to minimize the degradation of PET causes the decrease of gas bubbles that influence the bond strength and width.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 706-708)

Pages:

158-162

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Zhou. Microjoing and nanojoining [M].Beijing: CHINA MACHINE PRESS, 2010.

Google Scholar

[2] S. Haulon, P.Devos. Risk factors of early and late complications in patients undergoing endovascular aneurysm repair [J]. European journal of vascular and endovascular surgery, 2003, 25( 2): 118-124.

DOI: 10.1053/ejvs.2002.1821

Google Scholar

[3] M. Audronis , S.J. Hinder .A comparison of reactive plasma pre-treatments on PET substrates by Cu and Ti pulsed-DC and HIPIMS discharges [J]. Thin Solid Films, 2011, 520(5): 1564-1570.

DOI: 10.1016/j.tsf.2011.09.011

Google Scholar

[4] Cong-qin Ning, Yu Zhou. Development and research status of biomedical titanium alloys [J].Material Science &Technology, 2002, 10(1), 100-106.

Google Scholar

[5] H.L. Gower, R.R.G.M. Pieters. Pulse laser welding of metal-polymer sandwich materials using pulse shaping [J]. Laser Applications,2006,18(1):35-41.

DOI: 10.2351/1.2080307

Google Scholar

[6] Xiao Wang, Pin Li. Laser transmission joint between PET and titanium for biomedical application [J]. Materials Processing Technology, 2010, 210(2010):1761-1771.

DOI: 10.1016/j.jmatprotec.2010.06.007

Google Scholar

[7] Georgiev, G.L., Sultana, T., Baird, R.J., Auner, G., Newaz, G., Patwa, R., Herfurth, H.. XPS study of laser fabricated titanium/KaptonFN interfaces [J]. Applied Surface Science, 2008(245):7173-7177.

DOI: 10.1016/j.apsusc.2008.05.294

Google Scholar

[8] Katayama, S., Kawahito, Y.. Laser direct joining of metal and plastic [J]. Scripta Materialia, 2008(59): 1247-1250.

DOI: 10.1016/j.scriptamat.2008.08.026

Google Scholar

[9] Mian, A., Newaz, G., Vendra, L., Rahman, N., Georgiev, D.G., Auner, G., Witte, R., Herfurth, H. Laser bonded microjoints between titanium and polyimide for applications in medical implants [J]. Journal of Materials Science-Materials in Medicine, 2005(16): 229-237.

DOI: 10.1007/s10856-005-6684-1

Google Scholar

[10] Sultana, T., Georgiev, G.L., Auner, G., Newaz, G., Herfurth, H.J., Patwa, R.. XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium [J]. Applied Surface Science, 2008(255): 2569-2573.

DOI: 10.1016/j.apsusc.2008.07.149

Google Scholar

[11] Wahba, M., Kawahito, Y., Katayama, S.. Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate [J]. Journal of Materials Processing Technology,2011(211) : 1166-1174.

DOI: 10.1016/j.jmatprotec.2011.01.021

Google Scholar

[12] Lu-gang Jiao, Guo-min Zhao. Temperature dependence of reflectivity of 45# steel at the wavelength of 1.319 µm[J]. Journal of Applied Optics, 2009 (30):984-987.

Google Scholar

[13] Zhi-yuan Li etc.. Advanced Connection Method [M]. Beijing: CHINA MACHINE PRESS, 2000.

Google Scholar