Interaction of Chitosan with Metal Ions: From Environmental Applications to the Elaboration of New Materials

Abstract:

Article Preview

Chitosan is an emblematic example of biopolymer that can be obtained from renewable resources (fungal biomass, crustacean shells…) and that can be used for binding a number of metal ions through different mechanisms (complexation, electrostatic attraction, ion pair formation). Chitosan was used for the sorption of various transition metals, from toxic (Hg(II), Cd(II), U(VI), Mo(VI), V(IV) and V(V) …) to strategic and valuable metals (Pd(II), Pt(IV), Au(III) …). However, the interactions of chitosan with metal ions are not strictly limited to environmental applications. Hence, the binding of metal ions on the biopolymer can be used for designing new materials or new applications. Some examples are reported below.

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Edited by:

Edgardo R. Donati, Marisa R. Viera, Eduardo L. Tavani, María A. Giaveno, Teresa L. Lavalle, Patricia A. Chiacchiarini

Pages:

519-526

DOI:

10.4028/www.scientific.net/AMR.71-73.519

Citation:

E. Guibal et al., "Interaction of Chitosan with Metal Ions: From Environmental Applications to the Elaboration of New Materials", Advanced Materials Research, Vols. 71-73, pp. 519-526, 2009

Online since:

May 2009

Export:

Price:

$35.00

[1] G.A.F. Roberts: Chitin Chemistry (McMillan, Oxford, U.K. 1992).

[2] P. Sorlier, A. Denuziere, C. Viton and A. Domard: Biomacromolecules Vol. 2 (2001), p.765.

[3] E. Guibal: Sep. Purif. Technol. Vol. 38 (2004), p.43.

[4] M. Jaworska, K. Sakurai, P. Gaudon and E. Guibal: Polym. Int. Vol. 52 (2003a), p.198.

[5] M. Jaworska, M. Kula, P. Chassary and E. Guibal: Polym. Int. Vol. 52 (2003b), p.206.

[6] E. Guibal, C. Milot and J.M. Tobin: Ind. Eng. Chem. Res. Vol. 37 (1998), p.1454.

[7] M. Ruiz, A.M. Sastre and E. Guibal: React. Funct. Polym. Vol. 45 (2000), p.155.

[8] M. Ruiz, A.M. Sastre and E. Guibal: Sep. Sci. Technol. Vol. 37 (2002), p.2143.

[9] E. Guibal, C. Milot and J. Roussy: Sep. Sci. Technol. Vol. 35 (2000), p.1021.

[10] J. Guzman, I. Saucedo, R. Navarro, J. Revilla and E. Guibal: Langmuir Vol. 18 (2002), p.1567.

[11] J. Guzman, I. Saucedo, R. Navarro, J. Revilla and E. Guibal: Int. J. Biol. Macromol. Vol. 33 (2003), p.57.

[12] T. Vincent and E. Guibal: Ind. Eng. Chem. Res. Vol. 40 (2001), p.1406.

[13] E.P. Kuncoro, J. Roussy and E. Guibal: Sep. Sci. Technol. Vol. 40 (2005), p.659.

[14] L. Dambies, T. Vincent and E. Guibal: Water Res. Vol. 36 (2002), p.3699.

[15] K. Yoshizuka, Z. Lou and K. Inoue: React. Funct. Polym. Vol. 44 (2000), p.47.

[16] S.R. Ahmed, A.B. Kelly and T.A. Barbari: J. Membr. Sci. Vol. 280 (2006), p.553.

[17] J. Wu, M. Luan and J. Zhao: Int. J. Biol. Macromol. Vol. 39 (2006), p.185.

[18] J. Cha, W.B. Lee, C.R. Park, Y.W. Cho, C. -H. Ahn and I.C. Kwon: Macromol. Res. Vol. 14 (2006), p.573.

[19] K. Kofuji, C. -J. Qian, Y. Murata and S. Kawashima: J. Inorg. Biochem. Vol. 99 (2005), p.1329.

[20] T.K. Saha, H. Ichikawa and Y. Fukumori: Carbohydr. Res. Vol. 341, (2006), p.2835.

[21] X. Wang, Y. Du and H. Liu: Carbohydr. Polym. Vol. 56 (2004), p.21.

[22] E. Guibal: Prog. Polym. Sci. Vol. 30 (2005), p.71.

[23] T. Vincent and E. Guibal: Environ. Sci. Technol. Vol. 38 (2004), p.4233.

[24] F. Peirano Blondet, T. Vincent and E. Guibal: Int. J. Biol. Macromol. Vol. 43 (2008), p.69.

[25] J. Wu, J. Tang, Z. Dai, F. Yan, H. Ju and N. El Murr: Biosens. Electronics Vol. 22 (2006), p.102.

[26] H. Yi, L. -Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver and G.F. Payne: Biomacromolecules Vol. 6 (2005), p.2881.

DOI: 10.1021/bm050410l

[27] J. Lin, W. Qu and S. Zhang: Anal. Biochem. Vol. 360 (2007), p.288.

In order to see related information, you need to Login.