Interaction of Chitosan with Metal Ions: From Environmental Applications to the Elaboration of New Materials

Article Preview

Abstract:

Chitosan is an emblematic example of biopolymer that can be obtained from renewable resources (fungal biomass, crustacean shells…) and that can be used for binding a number of metal ions through different mechanisms (complexation, electrostatic attraction, ion pair formation). Chitosan was used for the sorption of various transition metals, from toxic (Hg(II), Cd(II), U(VI), Mo(VI), V(IV) and V(V) …) to strategic and valuable metals (Pd(II), Pt(IV), Au(III) …). However, the interactions of chitosan with metal ions are not strictly limited to environmental applications. Hence, the binding of metal ions on the biopolymer can be used for designing new materials or new applications. Some examples are reported below.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 71-73)

Pages:

519-526

Citation:

Online since:

May 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A.F. Roberts: Chitin Chemistry (McMillan, Oxford, U.K. 1992).

Google Scholar

[2] P. Sorlier, A. Denuziere, C. Viton and A. Domard: Biomacromolecules Vol. 2 (2001), p.765.

Google Scholar

[3] E. Guibal: Sep. Purif. Technol. Vol. 38 (2004), p.43.

Google Scholar

[4] M. Jaworska, K. Sakurai, P. Gaudon and E. Guibal: Polym. Int. Vol. 52 (2003a), p.198.

Google Scholar

[5] M. Jaworska, M. Kula, P. Chassary and E. Guibal: Polym. Int. Vol. 52 (2003b), p.206.

Google Scholar

[6] E. Guibal, C. Milot and J.M. Tobin: Ind. Eng. Chem. Res. Vol. 37 (1998), p.1454.

Google Scholar

[7] M. Ruiz, A.M. Sastre and E. Guibal: React. Funct. Polym. Vol. 45 (2000), p.155.

Google Scholar

[8] M. Ruiz, A.M. Sastre and E. Guibal: Sep. Sci. Technol. Vol. 37 (2002), p.2143.

Google Scholar

[9] E. Guibal, C. Milot and J. Roussy: Sep. Sci. Technol. Vol. 35 (2000), p.1021.

Google Scholar

[10] J. Guzman, I. Saucedo, R. Navarro, J. Revilla and E. Guibal: Langmuir Vol. 18 (2002), p.1567.

Google Scholar

[11] J. Guzman, I. Saucedo, R. Navarro, J. Revilla and E. Guibal: Int. J. Biol. Macromol. Vol. 33 (2003), p.57.

Google Scholar

[12] T. Vincent and E. Guibal: Ind. Eng. Chem. Res. Vol. 40 (2001), p.1406.

Google Scholar

[13] E.P. Kuncoro, J. Roussy and E. Guibal: Sep. Sci. Technol. Vol. 40 (2005), p.659.

Google Scholar

[14] L. Dambies, T. Vincent and E. Guibal: Water Res. Vol. 36 (2002), p.3699.

Google Scholar

[15] K. Yoshizuka, Z. Lou and K. Inoue: React. Funct. Polym. Vol. 44 (2000), p.47.

Google Scholar

[16] S.R. Ahmed, A.B. Kelly and T.A. Barbari: J. Membr. Sci. Vol. 280 (2006), p.553.

Google Scholar

[17] J. Wu, M. Luan and J. Zhao: Int. J. Biol. Macromol. Vol. 39 (2006), p.185.

Google Scholar

[18] J. Cha, W.B. Lee, C.R. Park, Y.W. Cho, C. -H. Ahn and I.C. Kwon: Macromol. Res. Vol. 14 (2006), p.573.

Google Scholar

[19] K. Kofuji, C. -J. Qian, Y. Murata and S. Kawashima: J. Inorg. Biochem. Vol. 99 (2005), p.1329.

Google Scholar

[20] T.K. Saha, H. Ichikawa and Y. Fukumori: Carbohydr. Res. Vol. 341, (2006), p.2835.

Google Scholar

[21] X. Wang, Y. Du and H. Liu: Carbohydr. Polym. Vol. 56 (2004), p.21.

Google Scholar

[22] E. Guibal: Prog. Polym. Sci. Vol. 30 (2005), p.71.

Google Scholar

[23] T. Vincent and E. Guibal: Environ. Sci. Technol. Vol. 38 (2004), p.4233.

Google Scholar

[24] F. Peirano Blondet, T. Vincent and E. Guibal: Int. J. Biol. Macromol. Vol. 43 (2008), p.69.

Google Scholar

[25] J. Wu, J. Tang, Z. Dai, F. Yan, H. Ju and N. El Murr: Biosens. Electronics Vol. 22 (2006), p.102.

Google Scholar

[26] H. Yi, L. -Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver and G.F. Payne: Biomacromolecules Vol. 6 (2005), p.2881.

DOI: 10.1021/bm050410l

Google Scholar

[27] J. Lin, W. Qu and S. Zhang: Anal. Biochem. Vol. 360 (2007), p.288.

Google Scholar