[1]
Chen S, Liu HL, Zhang ZQ. Finite element model and computational fluid dynamic of hyperelastic Ti-Ni alloy stent. Journal of Clinical Rehabilitative Tissue Engineering Research Vol. 13 (2009), pp.5065-5068.
Google Scholar
[2]
Marrhieu De Beule., Perer Mortier, Stéphane G. Carlier, et al. Realistic finite element-based stent design: The impact of balloon folding. Journal of Biomechanics Vol. 41(2008), pp.383-389.
DOI: 10.1016/j.jbiomech.2007.08.014
Google Scholar
[3]
S.N. Davis Chua, B.J. MacDinald, M.S.J. Hashmin. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. Journal of Materials Processing Technology Vol. 155-156 (2004), pp.1772-1779.
DOI: 10.1016/j.jmatprotec.2004.04.396
Google Scholar
[4]
Kelvin K.L.W., Jiyuan Tu, Richard M.K., et al. Cardiac flow component analysis. Medical Engineering & Physics Vol. 32 (2010), pp.174-188.
Google Scholar
[5]
Liang DK, Yang DZ, Qi M. Finite element method and computational fluid dynamics used in the analysis of stent. Journal of Biomedical Engineering Vol. 24 (2007), pp.549-553.
Google Scholar
[6]
Joel L.B., Aland S., James E.M., et al. Experiment and computational flow evaluation of coronary stents[J]. Annals of Biomedical Engineering Vol. 28 (2000), pp.386-398.
Google Scholar
[7]
Rossella B., Francesca G., Francesco M., et al. Effects of different stent designs on local hemodynamics in stented arteries. Journal of Biomechanics Vol. 41 (2008), pp.1053-1061.
DOI: 10.1016/j.jbiomech.2007.12.005
Google Scholar
[8]
V. Deplano, C. Bertolotti, P. Barragan. Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation. Medical & Biological Engineering & Computing Vol. 42 (2004), pp.650-659.
DOI: 10.1007/bf02347547
Google Scholar