Phase Structure, Microstructure and Electrical Properties of BiMnO3-Doped (Na0.515K0.485)0.96Li0.04(Nb0.8Ta0.2)O3 Lead-Free Ceramics

Article Preview

Abstract:

1-x)[(Na0.515K0.485)0.96Li0.04(Nb0.8Ta0.2)O3]-xBiMnO3 (x = 0, 0.002, 0.004, 0.006, 0.008 and 0.010) lead-free ceramics were prepared using a conventional mixed-oxide method. The result indicated that the highest density of 4.89 ± 0.01 g/cm3 was found in 0.6 mol% BiMnO3 - doped sample sintered at 1060 C. Grain size decreased with increasing of BiMnO3 content. In the composition range studied, the perovskite phase with the coexistence of the orthorhombic and tetragonal phases was identified at approximately 0 x 0.006 by the X-ray diffraction analysis, which led to a significant enhancement of the piezoelectric properties. The temperature dependence of dielectric properties showed that the addition of BiMnO3 markedly decreased the ferroelectric tetragonal-paraelectric cubic phase transition temperature (TC), and greatly shifted the polymorphic phase transition from the ferroelectric orthorhombic to the ferroelectric tetragonal phase (TOT) to near room temperature. Sample with x = 0.002 exhibited excellent electrical properties: the dielectric constant (εr) = 1228, dissipation factor (tan δ) = 0.0244, piezoelectric constant (d33) = 235 pC/N, and Curie temperature (TC) = 286 °C. These results clearly showed that the 0.998(Na0.515K0.485)0.96Li0.04(Nb0.8Ta0.2)O3 - 0.002BiMnO3 ceramics are very promising lead-free piezoelectric candidates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura: Nature. Vol. 432 (2004), p.84

DOI: 10.1038/nature03028

Google Scholar

[2] R. Zuo, J. RÖdel, R. Chen and L. Li: J. Am. Ceram. Soc. Vol. 89 (2006), p. (2010)

Google Scholar

[3] H. Birol, D. Damjanovic and N. Setter: J. Eur. Ceram. Soc. Vol. 26 (2006), p.861

Google Scholar

[4] Y. Guo, K.I. Kakimoto and H. Ohsato: Jpn. J. Appl. Phys. Vol. 43 (2004), p.6662

Google Scholar

[5] K. Higashide, K.I. Kakimoto and H. Ohsato: J. Eur. Ceram. Soc. Vol. 27 (2007), p.4107

Google Scholar

[6] S. Zhang, R. Xia, T.R. Shrout, G. Zang and J. Wang: J. Appl. Phys. Vol. 100 (2006), p.104108

Google Scholar

[7] Y. Saito and H. Takao: Ferroelectrics. Vol. 338 (2006), p.17

Google Scholar

[8] J. Hao, Z. Xu, R. Chu, Y. Zhang, G. Li, Q. Yin: Mater. Chem. Phys. Vol. 118 (2009), p.229

Google Scholar

[9] D. Lin, K.W. Kwok, H. Tian and H.W.L. Chan: J. Am. Ceram. Soc. Vol. 90 (2007), p.1458

Google Scholar

[10] R. Zuo, J. Fu, S. Su, X. Fang and J.L. Cao: J. Mater. Sci.: Mater. Electron. Vol. 20 (2009), 212

Google Scholar

[11] H. Du, D. Liu, F. Tang, D. Zhu and Z. Wancheng: J. Am. Ceram. Soc. Vol. 90 (2007), p.2824

Google Scholar

[12] Z. Branković, Z.M. Stanojević, L. Mančić, V. Vukotić, S. Bernik and G. Branković: J. Eur. Ceram. Soc. Vol. 30 (2010), p.277

DOI: 10.1016/j.jeurceramsoc.2009.06.030

Google Scholar

[13] T.A. Skidmore and S.J. Milne: J. Mater. Res. Vol. 22 (2007), p.2265

Google Scholar

[14] ICDD Powder Diffraction File No. 32-0822, International Centre for Diffraction Data, Newton Squre, PA (2001).

Google Scholar

[15] ICDD Powder Diffraction File No. 71-0945, International Centre for Diffraction Data, Newton Squre, PA (2001).

Google Scholar