A New Synthesis of BaHPO4 Precipitated by BaCO3-H3PO4-NaOH System at Room Temperature

Article Preview

Abstract:

Barium hydrogenphosphate, BaHPO4 was synthesized for the first time through simple and rapid method using BaCO3-H3PO4-NaOH, pH =9.0 at room temperature for 30 min. The studied BaHPO4 decomposed in a single well-defined stage via deprotonated hydrogenphosphate reactions, revealed by TG/DTG and DSC techniques. The calculated wavenumbers based on DSC peak were comparable with FTIR results, which support the breaking bonds of P-OH (HPO42-) in the deprotonated hydrogenphosphate reactions. The thermodynamic functions (ΔH*, ΔG*, and ΔS*) for the deprotonated hydrogenphosphate reactions calculated from DSC data indicate that the deprotonated HPO42- reaction occur a lower-energy pathway and spontaneous process. The FTIR, XRD and SEM data of the studied BaHPO4 and its decomposed product Ba2P2O7 are also reported.

You might also be interested in these eBooks

Info:

[1] M.T. Averbuch-Pouchat, A.Durif, Topics in Phosphate Chemistry, first ed., World Scientific, Singapore 1996.

Google Scholar

[2] P. Sundaramoorthi, G. Kanchana, S. Kalainathan, Spectrochemic Acta A. 69, (2008), p.1154–1159.

Google Scholar

[3] S. Suri, K.K. Bamzai, V. Singh, J. Therm. Anal. Calorim. 105,(1), (2011), pp.229-238.

Google Scholar

[4] D. Nallamuthu, P. Selvarajan, T. H. Freeda, Physica B-Conden. Matter. 405(24),(2010), pp.4908-4913.

DOI: 10.1016/j.physb.2010.09.030

Google Scholar

[5] S. Suri, K.K. Bamzai, V. Singh, Ferroelectics. 423,(2011), pp.94-104.

Google Scholar

[6] W. Huang, D.E. Day, M.N. Rahaman. J. Amer. Ceram. Soc., 90(3), (2007), pp.838-844.

Google Scholar

[7] E. Banks, R/ Chianelli, F.Pintchovsky, J. Cryst. Growth, 18(2), (1973), pp.185-190. [8] C. Duan, X. Wu, H. Chen, X. Yang, J. Zhao, Wuji Cailiao Xuebao/J. Inorg. Mater., 20(5), (2005), pp.1043-1048.

Google Scholar

[9] C. Kato, K. Fujita, K. Matsuda, Nippon Kagaku Kaishi / Chem. Soc. Japan Chem. Ind. Chem. J., (7), (1996), pp.636-637.

Google Scholar

[10] T. Nishino, N. Ishizawa, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, J. Ceram. Soc. Japan, 108(6), (2000), pp.575-580.

DOI: 10.2109/jcersj.108.1262_944

Google Scholar

[11] P. Parhi, A.R. Ray, A.Ramanan, J. Amer. Ceram. Soc., 90(4), (2007), pp.1237-1242.

Google Scholar

[12] K.C. Hebber, S.M. Dharma Prakash, P. Mohan Rao, Bull Mater Sci. 14,(1991), p.1219–23.

Google Scholar

[13] D.Y. Pan, D.R. Yuan, H.Q. Sun, S.Y. Guo, X.Q. Wang, X.L. Duan, C.N. Luan, Z.F. Li. Cryst. Res. Technol.,41,(2006), p.236–8.

Google Scholar

[14] S. K. Arora, T. R. Trivedi, A.T. Oza, V.A. Patel. Acta Materialia, 49(11), (2001), pp.2103-2107.

DOI: 10.1016/s1359-6454(01)00024-6

Google Scholar

[15] S.K. Arora, T.R. Trivedi, V.A. Patel. Scrip. Mater., 47(10), (2002), pp.643-647.

Google Scholar

[16] T. BenChaabane, L. Smiri, A. Bulou, Solid State Sci., 6(2), (2004), pp.197-204.

Google Scholar

[17] F. Wang, G. Xu, Z. Zhang, Mater. Lett., 59(7), (2005), pp.808-812.

Google Scholar

[18] H.A. Höppe, M. Daub, O. Oeckler, Solid State Sci., 1(8),(2009), pp.1484-1488.

Google Scholar

[19] G.Herzberg, Molekülspektren und Molekülstruktur. I. Zweiatomige Moleküle, Steinkopff, Dresden, 1939.

Google Scholar

[20] N. B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy Academic Press, New York 1964.

DOI: 10.1126/science.146.3649.1289

Google Scholar

[21] B. D.Cullity, Elements of X-ray Diffraction, second ed., Addison-Wesley, Massachusetts,1977.

Google Scholar