A Simple Route to Synthesize Ferromagnetic Binary Calcium Iron Pyrophosphate CaFeP2O7 Using Aqueous-Acetone Media

Article Preview

Abstract:

A binary calcium iron pyrophosphate CaFeP2O7 was synthesized by solid state route using the mixing of calcium carbonate, iron metal and phosphoric acid in aqueous-acetone media at 600 °C. The XRD datum indicates the formation of CaFeP2O7 phase without the presence of any phase impurities. FTIR result indicates the presence of the P2O74- anion in the structure. Sheet-like microparticle of CaFeP2O7 was revealed by SEM. Room temperature magnetization result showed ferromagnetic behavior of the synthesized CaFeP2O7, with saturation-specific magnetization value of 11.067 emu g-1 at 10kOe. The magnetic feature of the synthesized CaFeP2O7 in this work compared with M2P2O7 (M = Ca and Fe), its isotypic (CaMP2O7 (M= Mn and Co) and CFeP2O7 (C= Co and Cu) reported in our previous works is important properties for specific applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. C. Masson, E. F. de Souza, and F.Galembeck, Colloids Surf. A, vol.121, (1997), pp.247-255.

Google Scholar

[2] O. Masala, E. J.L. Mcinnes, and P. O'Brien, Inorg. Chem. Acta, vol. 339, (2002), pp.366-372.

Google Scholar

[3] M. Ishikawa, H. Enomoto, M. Maisuuka, and C. Iwakura§, Electrochim Acta, vol. 40, (1995), pp.1663-1668,.

Google Scholar

[4] M. Férid,and K. Horchani-Naifer, Mater. Res. Bull., vol. 39, (2004), pp.2209-2217.

Google Scholar

[5] Z. W. Xiao, G. R. Hu, Z. D. Peng, K. Du, and X.G. Gao, Chinese Chem. Lett., vol.18, (2007), pp.1525-1527

Google Scholar

[6] O. Masala, P. O'Brien, and G. Rafeletos, Cryst. Growth Des., vol.3, (2003), pp.431-434.

Google Scholar

[7] B. Boonchom, and N. Phuwongpha, Mater. Lett., vol.63, (2009), pp.1709-1711.

Google Scholar

[8] B. Boonchom, and N.Vittayakorn, Mater. Lett., vol.64 no.3, (2010), pp.275-277.

Google Scholar

[9] B. Boonchom, and R. Baitahe, Mater. Lett. vol.63, (2009), pp.2218-2220.

Google Scholar

[10] Information on http://geb.uni-giessen.de/geb/volltexte/2002/819/pdf/MaassKai-2002-09-11.pdf

Google Scholar

[11] B. Boonchom, and C. Danvirutai, Ind. Eng. Chem. Res. vol.47 no.16, (2009), pp.5976-5981.

Google Scholar

[12] R.D. Adams, R. Layland, and C. Payen, Polyhedron, vol.14, no.23, (1995), pp.3473-3480

Google Scholar

[13] F. Amroussi, A. Moqine, and A. Boukhari, Eur. J. Solid State Inorg. Chem. vol. 34, (1997), p.161

Google Scholar

[14] D. Riou, P. Labbe, and M.Goreaud, C.R. Seances Acad. Sci Ser. C, vol.307, no. 16, (1988), pp.1751-1756.

Google Scholar

[15] E. Steger, and B. Käbner, Spectrochim. Acta, vol. 24A, (1968), pp.447-456

Google Scholar

[16] E. J. Baran, R.C. Mercader, A. Massaferro, and E. Kremer, Spectrochim. Acta, vol.60A, (2004), pp.1001-1005.

Google Scholar

[17] A. Boukhari, A. Moqine, and S.Flandrois, J. Solid State. Chem. vol.87, (1990), pp.251-256

Google Scholar

[18] Y. Du, Y. Xiong, J. Li, X.Yang, J. Mol. Catal. A vol.298, (2009), pp.12-16.

Google Scholar

[19] M. Touaiher, K. Rissouli, K. Benkhouja, M. Taibi, J .Aride, A. Boukhari, and B. Heulin,Mater. Chem. Phys., vol.85, (2004), pp.41-46.

DOI: 10.1016/j.matchemphys.2003.11.032

Google Scholar

[20] A. Handizi, A. Boukhari, E. M. Holt, J. Aride,and S.Flandrois, Mater. Res. Bull., vol.28, (1993), pp.1241-1247.

DOI: 10.1016/0025-5408(93)90171-9

Google Scholar

[21] M.J. Mahesh, G.S. Gopalakrishna, K.G. Ashamanjari., Mater. Sci. Semicon Proc., Vol.10, (2007), pp.117-123.

Google Scholar

[22] H. Ino, K. Hayashi, T. Otsuka, D. Isobe, K. Tokumitsu, and K. Oda, Mater. Sci. Eng., vol. A304–306, (2001),pp.972-974.

Google Scholar