[1]
Hiromichi Tsuji, Toshio Enomoto, Shinichi Maruvama and Takuya Yoshimula: A study of experimental acoustic modal analysis of automotive interior acoustic field coupled with the body structure. SAE International. 2012-01-1187.
DOI: 10.4271/2012-01-1187
Google Scholar
[2]
D. S. Li, L. Cheng, C. M. Gosselin: Analysis of structural acoustic coupling of a cylindrical shell whit an internal floor partition. Journal of Sound and Vibration. 2002 250(5).
DOI: 10.1006/jsvi.2001.3959
Google Scholar
[3]
Chul Ki Song, Jin Kwon Hwang, Jang Moo Lee, J. Karl Hedrick: Active vibration control for structural-acoustic coupling system of a 3-D vehicle cabin model. Journal of Sound and Vibration. 267(2003) 851-865.
DOI: 10.1016/s0022-460x(02)01553-5
Google Scholar
[4]
Ma Tianfei, Gao Gang, Zhang Yuntao: Acoustic-structure coupled analysis of interior noise for heavy commercial vehicle. International Conference on Computer and Information Application. (2010).
DOI: 10.1109/iccia.2010.6141612
Google Scholar
[5]
Komzsik Louis: Computational techniques of finite element analysis. Florida: CRC Press, (2005).
Google Scholar
[6]
MSC.Nastran 2012 Dynamic User's Guide. MSC.Nastran Sofrware Coporation, 2012.
Google Scholar
[7]
Wohlmuth,B.I: A mortar finite element method using dual spaces for the lagrange multiplier SIAM Journal on Numerical Analysis,(2000)989-1012.
DOI: 10.1137/s0036142999350929
Google Scholar
[8]
Benardi,C,Maday,Y and Patera,AT: A new noncoforming approach to domain decompositon: the mortran element method. Nonlinear Partial Differential Equations and Their Applications. Paris: Longman Sci.Tech., (1994)13-51.
Google Scholar
[9]
Liu Yu, Yu Fan, Liu Jiang: Modal analysis of vehicle compartment with acoustic-structure coupling. Journal of Noise and Vibration Control. Vol.38 No.5, Aug 2005.
Google Scholar