A Temperature-Measurable Dielectric Barrier Discharge Plasma Cooperating with the Catalysis Device for Nitric Oxides Removal

Article Preview

Abstract:

The conventional study of NOx removal is mainly concentrated on the various chemical reactions, but takes no account of the important effect of temperature increase caused by the discharge. In this paper, we present a method whereby the reactive temperature in reaction region can be easily measured without affecting the discharge. By measuring the reactive temperature, it is revealed that the temperature in reaction region is closely related and linearly enhanced with the discharge power, and that the catalysis is not the main reason for the reactive temperature increase. By the investigation on the temperatures effect on the NOx removal, it is found that the NOx removal rate increases with the rise of temperature in reaction region. Therefore, the NOx removal is tightly related with the temperature in reaction region that can be controlled by the discharge intensity under the various ambient temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

196-201

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. S. Mok, H. J. Lee, M. Dors, J. Mizeraczyk, Chemical Engineering Journal 110 (2005) 79.

Google Scholar

[2] K. Yukimura, K. Kawamura, S. Kambara, H. Moritomi, T. Yamashita, IEEE Transactions on Plasma Science 33 (2005) 763.

DOI: 10.1109/tps.2005.844610

Google Scholar

[3] J. O. Chae, J. Electrostatics 57 (2003) 251.

Google Scholar

[4] Y. S. Mok, H. J. Lee, Fuel Processing Technology 87 (2006) 591.

Google Scholar

[5] J. H. Kwak, Charles H. F. Peden, J. Szanyi, Catalysis Letters 109 (2006) 1.

Google Scholar

[6] Y. Itoh, M. Ueda, H. Shinjoh, M. Sugiura, M. Arakawa, J. Chem. Technol. Biotechnol. 81 (2006) 544.

Google Scholar

[7] H. He, Y. B. Yu, Catalysis Today 100 (2005) 37.

Google Scholar

[8] H. He, C. B. Zhang, Y. B. Yu, Catalysis Today 90 (2004) 191.

Google Scholar

[9] H. He, X. L. Zhang, Q. Wu, C. B. Zhang, Y. B. Yu, Catal. Surv. Asia. 12 (2008) 38.

Google Scholar

[10] Th. Hammer, Th. Kappes, M. Baldauf, Catalysis Today 89 (2004) 5.

Google Scholar

[11] H. Miessner, K.-P. Francke, R. Rudolph, Th. Hammer, Catalysis Today 75 (2002) 325.

Google Scholar

[12] H. Miessner, K. P. Francke, R. Rudolph, Applied Catalysis B: Environmental 36 (2002) 53.

Google Scholar

[13] S. Bröer, Th. Hammer, Applied Catalysis B: Environmental 28 (2000) 101.

Google Scholar

[14] J. H. Niu, X. F. Yang, A. M. Zhu, L. L. Shi, Q. Sun, Y. Xu, C. Shi, Catalysis Communications 7 (2006) 297.

Google Scholar

[15] G. L. Chen, S. H. Chen, W. X. Chen, S. Z. Yang, Chin. Phys. B 17 (2008) 4568

Google Scholar

[16] G. L. Chen, W. J. Zhao, S. H. Chen, M. Y. Zhou, W. R. Feng, W. C. Gu, S. Z. Yang, Appl. Phys. Lett. 89 (2006) 121501.

Google Scholar

[17] W. D. Yang, P. N. Wang, Z. P. Liu, L. Mi, F. M. Li, Chin. Phys. 11 (2002) 260

Google Scholar

[18] X. Q. Wang, W. Chen, Q. P. Guo, Y. Li, G. H. Lv, X. P. Sun, X. H. Zhang, K. C. Feng, S. Z. Yang, J. Appl. Phys. 106 (2009) 013309.

Google Scholar

[19] X. Q. Wang, Y. Li, W. Chen, G. H. Lv, J. Huang, G. X. Zhu, X. H. Zhang, D. C. Wang, K. C. Feng, S. Z. Yang, Japanese Journal of Applied Physics 49 (2010) 086201

Google Scholar