A Study of Cavitation Bubble Temperatures in Room Temperature Ionic Liqiud

Article Preview

Abstract:

Room temperature ionic liquids (RTIL) have been developed to a central point of interest in both academia and industry. RTIL is non-volatile, thermally stable and non-flammable solvent. These properties can offer a green opportunity for sonochemical reactions. In this work, the cavitation bubble temperatures have been measured using methyl radical recombination (MRR) method. The temperatures measured in ImPF6 are in the range of 3000 4000 K. Additionally, based on the bubble dynamic equation with the consideration of liquid surface tension, viscosity and radiative resistance, numerical simulations have been carried out to investigate the cavitation bubble dynamics. The difference of the temperatures obtained from the experiment and numerical simulations has been interpreted.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

209-213

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Gedanken, Using sonochemistry for the fabrication of nanomaterials, Ultras. Sonochem. 11 (2004) 47-55.

Google Scholar

[2] G. Dantsin, K.S. Suslick, Sonochemical preparation of a nanostructured bifunctional catalyst, J. Am. Chem. Soc. 122 (2000) 5214-5215.

DOI: 10.1021/ja994300w

Google Scholar

[3] K.S. Suslick, J.W. Gawienowski, P.F. Schubert, Alkane sonochemistry, J. Phys. Chem. 87 (1983) 2299-2301.

DOI: 10.1021/j100236a013

Google Scholar

[4] R.G. Rogers, Materials science-reflections on ionic liquids, Nature 447 (2007) 917-918.

Google Scholar

[5] H. Yang, H. Wang, Y. Yang, X. Liu, S. Zhang, Study of zinc oxide nanorods prepared in room temperature ionic liquid via ultrasonic irradiation, Acta Acustica 36 (2011) 167-171.

Google Scholar

[6] Y. Wang, Y. Yang, X. Zhang, X. Liu, A. Nakamura, Optical investigation on cadmium-doped zinc oxide nanoparticles synthesized by using a sonochemical method, CrystEngComm 14 (2012) 240-245.

DOI: 10.1039/c1ce05733b

Google Scholar

[7] B. Gao, Y.T Yang, H. Yang, S.Y. Zhang, X.J. Liu, Study of lanthanide doped zinc oxide nanoparticles synthesized via a sonochemical method, Sci. China Ser. G (Accepted)

DOI: 10.1007/s11433-013-5090-9

Google Scholar

[8] J. Rae, M. Ashokkumar, O. Eulaerts, Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultras. Sonochem. 12 (2005) 325-329.

DOI: 10.1016/j.ultsonch.2004.06.007

Google Scholar

[9] T. Kimura, T. Sakamoto, J.M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction, Ultras. Sonochem. 3 (1996) S157- S161.

DOI: 10.1016/s1350-4177(96)00021-1

Google Scholar

[10] E. Ciawi, M. Ashokkumar, F. Grieser, Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions, J. Phys. Chem. B 110 (2006) 9779-9781.

DOI: 10.1021/jp0618734

Google Scholar

[11] P.M. Kanthale, M. Ashokkumar, F. Grieser, Estimation of cavitation bubble temperatures in an ionic liquid, J. Phys. Chem. C 111 (2007) 18461-18463.

DOI: 10.1021/jp710148k

Google Scholar

[12] D.J. Flannigan, S.D. Hopkins, K.S. Suslick, Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions, J. Organomet. Chem. 690 (2005) 3513–3517.

DOI: 10.1016/j.jorganchem.2005.04.024

Google Scholar

[13] D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy, Sonoluminescence and bubble dynamics for a single, stable cavitation bubble, J. Acoust. Soc. Am. 91 (1992) 3166-3183.

DOI: 10.1121/1.402855

Google Scholar

[14] A.B. Pereiro, J.L. Legido, A. Rodriguez, Physical properties of ionic liquids based on 1-alkyl- 3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence, J. Chem. Thermodynamics 39 (2007) 1168–1175.

DOI: 10.1016/j.jct.2006.12.005

Google Scholar

[15] A. Gedanken, Sonochemistry and its application to nanochemistry, Curr. Sci. 8 (2003) 1720-1722.

Google Scholar