[1]
A. Gedanken, Using sonochemistry for the fabrication of nanomaterials, Ultras. Sonochem. 11 (2004) 47-55.
Google Scholar
[2]
G. Dantsin, K.S. Suslick, Sonochemical preparation of a nanostructured bifunctional catalyst, J. Am. Chem. Soc. 122 (2000) 5214-5215.
DOI: 10.1021/ja994300w
Google Scholar
[3]
K.S. Suslick, J.W. Gawienowski, P.F. Schubert, Alkane sonochemistry, J. Phys. Chem. 87 (1983) 2299-2301.
DOI: 10.1021/j100236a013
Google Scholar
[4]
R.G. Rogers, Materials science-reflections on ionic liquids, Nature 447 (2007) 917-918.
Google Scholar
[5]
H. Yang, H. Wang, Y. Yang, X. Liu, S. Zhang, Study of zinc oxide nanorods prepared in room temperature ionic liquid via ultrasonic irradiation, Acta Acustica 36 (2011) 167-171.
Google Scholar
[6]
Y. Wang, Y. Yang, X. Zhang, X. Liu, A. Nakamura, Optical investigation on cadmium-doped zinc oxide nanoparticles synthesized by using a sonochemical method, CrystEngComm 14 (2012) 240-245.
DOI: 10.1039/c1ce05733b
Google Scholar
[7]
B. Gao, Y.T Yang, H. Yang, S.Y. Zhang, X.J. Liu, Study of lanthanide doped zinc oxide nanoparticles synthesized via a sonochemical method, Sci. China Ser. G (Accepted)
DOI: 10.1007/s11433-013-5090-9
Google Scholar
[8]
J. Rae, M. Ashokkumar, O. Eulaerts, Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Ultras. Sonochem. 12 (2005) 325-329.
DOI: 10.1016/j.ultsonch.2004.06.007
Google Scholar
[9]
T. Kimura, T. Sakamoto, J.M. Leveque, H. Sohmiya, M. Fujita, S. Ikeda, T. Ando, Standardization of ultrasonic power for sonochemical reaction, Ultras. Sonochem. 3 (1996) S157- S161.
DOI: 10.1016/s1350-4177(96)00021-1
Google Scholar
[10]
E. Ciawi, M. Ashokkumar, F. Grieser, Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions, J. Phys. Chem. B 110 (2006) 9779-9781.
DOI: 10.1021/jp0618734
Google Scholar
[11]
P.M. Kanthale, M. Ashokkumar, F. Grieser, Estimation of cavitation bubble temperatures in an ionic liquid, J. Phys. Chem. C 111 (2007) 18461-18463.
DOI: 10.1021/jp710148k
Google Scholar
[12]
D.J. Flannigan, S.D. Hopkins, K.S. Suslick, Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions, J. Organomet. Chem. 690 (2005) 3513–3517.
DOI: 10.1016/j.jorganchem.2005.04.024
Google Scholar
[13]
D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy, Sonoluminescence and bubble dynamics for a single, stable cavitation bubble, J. Acoust. Soc. Am. 91 (1992) 3166-3183.
DOI: 10.1121/1.402855
Google Scholar
[14]
A.B. Pereiro, J.L. Legido, A. Rodriguez, Physical properties of ionic liquids based on 1-alkyl- 3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence, J. Chem. Thermodynamics 39 (2007) 1168–1175.
DOI: 10.1016/j.jct.2006.12.005
Google Scholar
[15]
A. Gedanken, Sonochemistry and its application to nanochemistry, Curr. Sci. 8 (2003) 1720-1722.
Google Scholar