Zenith Wet Delay Estimation and Radio Source Sky Coverage

Article Preview

Abstract:

This paper investigates some approaches to improve the accuracy of parameter estimation in geodetic Very Long Baseline Interferometry (VLBI). By analyzing the radio source Sky Coverage (SC) for each antenna, a new approach, the method of condition number is proposed to find out reasonable time ranges for zenith wet delay (ZWD) estimation. The relative accuracy of Earth Orientation Parameters (EOP) is tested after implementing the method of condition number and the result shows that the relative accuracy of EOPs could be improved by ~3% with compared to the equal time range of 20min for ZWD estimation for CONT sessions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

593-599

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K Teke, J Boehm, H Schuh, Modeling Stochastic Processes in Geodetic VLBI Analysis, Turkish Geodetic Commission Annual Meeting. (2008)

Google Scholar

[2] H Schuh, and V Tesmer, Considering a priori correlations in VLBI data analysis, NASA Conference Publication. (2000)

Google Scholar

[3] V Tesmer, Refinement of the Stochastic VLBI Model, First Results. in: W Schwegmann, V Thorandt (Eds.): Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry. (2003)

Google Scholar

[4] H Kutterer, The role of parameter constraints in VLBI data analysis, 16th Working Meeting on European VLBI. (2003)

Google Scholar

[5] OJ Sovers, JL Fanselow, CS Jacobs Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Modern Phys 70(4) (1998):1430-1436.

DOI: 10.1103/revmodphys.70.1393

Google Scholar

[6] O Titov, V Tesmer, J Böehm OCCAM v. 6.0 software for VLBI data analysis. in: NR Vandenberg, KD Baver (Eds.): International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. (2004) 267-271

Google Scholar

[7] K Teke, J Böehm, H Spicakova, A Pany, L Plank, E Tanir, H Schuh, Piecewise linear offsets for VLBI parameter estimation. 16th Working Meeting on European VLBI for Geodesy and Astrometry. (2009)

DOI: 10.1007/978-3-642-20338-1_126

Google Scholar

[8] S Böckmann, T Artz, A Nothnagel. VLBI terrestrial reference frame contributions to ITRF2008, J Geod. (2010) 84,205.

DOI: 10.1007/s00190-009-0357-7

Google Scholar

[9] H Spicakova, L Plank, T Nilsson, J Böhm, H Schuh, Terrestrial reference frame solution with the Vienna VLBI Software VieVS and implication of tropospheric gradient estimation. (2011) 120.

DOI: 10.1007/978-3-642-20338-1_126

Google Scholar

[10] B Zhang, PhD. thesis, Shanghai Astronomical Observatory, CAS. 2004, p.35

Google Scholar

[11] L Petrov, D Gordon, J Gipson, D MacMillan, C Ma, E Fomalont, R.C Walker and C Carabajal. Precise geodesy with the very long baseline array, J Geod. 83 (2009) 862

DOI: 10.1007/s00190-009-0304-7

Google Scholar

[12] J Böehm, H Spicakova, L Plank, et al. Plans for the Vienna VLBI Software VieVS. Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting. (2009) 24-25

DOI: 10.1007/978-3-642-20338-1_126

Google Scholar

[13] Information on http://ivs.nict.go.jp/mirror/program/cont02/

Google Scholar

[14] Information on http://ivs.nict.go.jp/mirror/program/cont08/#Schedules

Google Scholar

[15] M Zinovy. On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J Geod. 83(6). (2009) 19

DOI: 10.1007/s00190-008-0265-2

Google Scholar