Temperature Correction for Ceramic Powder X-Ray Diffraction at a Higher Temperature

Article Preview

Abstract:

For powder XRD measurement at a higher temperature, there is a great difference (ΔT) between the temperature (T) detected by a thermocouple in a specimen stage and the actual temperature (Ta) of the ceramic powder surface irradiated by X-ray. The BaTiO3 ceramic powder was employed to make an temperature correction on heating in light of the change of the ~ 45º characteristic peak in the vicinity of its tetragonal-cubic phase transition point (TC = 130 °C). The thermal relaxation of BaTiO3 is considered. When the BaTiO3 ceramic powder was measured at TC, the phase transition occurred at T = 170 °C and ΔT was determined as 40 °C, which is 10 °C higher than that of the ceramic bulk. The error of temperature correction is less than ± 3 °C at TC. The approximation of a linear dependency Ta - T was given as a temperature correction line between 25 and 130 °C (Ta here).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

768-772

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Snellings, G. Mertens,S. Hertsens, J. Elsen, The zeolite-lime pozzolanic reaction: reaction kinetics and products by in situ synchrotron X-ray powder diffraction, Micropor. Mesopor. Mater. 126 (2009) 40-49.

DOI: 10.1016/j.micromeso.2009.05.017

Google Scholar

[2] R. Snellings, G. Mertens, O. Cizer, J. Elsen, Early age hydration and pozzolanic reaction in nature zeolite blended cement: reaction kinetics and products by in situ synchrotron X-ray powder diffraction, Cement Concrete Res. 40 (2010) 1704-1713.

DOI: 10.1016/j.cemconres.2010.08.012

Google Scholar

[3] S. Malinov, W. Sha, Z. Guo, C. C. Tang, A. E. Long, Synchrotron X-ray diffraction study of the phase transformations in titanium alloys, Mater. Charact. 48 (2002) 279-295.

DOI: 10.1016/s1044-5803(02)00286-3

Google Scholar

[4] X. P. Wang, G. Corbel, S. Kodjikian, Q. F. Fang, P. Lacorre, Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi3NbO7, J. Solid State Chem. 179 (2006) 3338-3346.

DOI: 10.1016/j.jssc.2006.06.031

Google Scholar

[5] S. Boullosa-Eiras, E. Vanhaecke, T. Zhao, D. Chen, A. Holmen, Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2-Al2O3 and CeO2-Al2O3 nanocomposites, Catal. Today 166 (2011) 10-17.

DOI: 10.1016/j.cattod.2010.05.038

Google Scholar

[6] E. Cakmak, H. Choo, K. An, Y. Ren, A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading, Acta Mater. 60 (2012) 6703-6713.

DOI: 10.1016/j.actamat.2012.08.040

Google Scholar

[7] J. Bednarcik, R.Nicula, M. Stir, E. Burkel, In situ X-ray diffraction investigation of nanocry stallization of amorphous Co-Fe-Zr-B alloys, J. Magn. Magn. Mater. 316 (2007) e823-e826.

DOI: 10.1016/j.jmmm.2007.03.115

Google Scholar

[8] J. S. Thorne, J. R. Dahn, M. N. Obrovac, R. A. Dunlap, Room temperature crystallization kinetics of amorphous Cu6Sn5+C alloys, J. Alloys Compd. 509 (2011) 6705-6710.

DOI: 10.1016/j.jallcom.2011.03.150

Google Scholar

[9] H. Gao, H. Xie, J. Chen, Z. Xu, The Penetration of X-Rays, Laser Optoelectr. Prog. 11 (2001) 27-30.

Google Scholar

[10] K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate, J. Am. Ceram. Soc. 72 (1989) 1555-1558.

DOI: 10.1111/j.1151-2916.1989.tb07706.x

Google Scholar

[11] D.-Y. Lu, X.-Y. Sun, M. Toda, A novel high-k 'Y5V' barium titanate ceramics co-doped with lanthanum and cerium, J. Phys. Chem. Solids 68 (2007) 650-664.

DOI: 10.1016/j.jpcs.2007.02.018

Google Scholar

[12] L. M. Li, Y. J. Jiang, L. Z. Zeng, Temperature dependence of Raman spectra in BaTiO3, J. Raman Spectrosc 27 (1996) 503-506.

DOI: 10.1002/(sici)1097-4555(199607)27:7<503::aid-jrs986>3.0.co;2-i

Google Scholar

[13] W. G. Fateley, F. R. Dollish, N. T. McDevitt, F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations, John Wiley & Sons, New York, 1972.

DOI: 10.1002/bbpc.19740780233

Google Scholar

[14] T. Kolodiazhnyi, A. Petric, Analysis of point defects in polycrystalline BaTiO3 by electron paramagnetic resonance, J. Phys. Chem. Solids 64 (2003) 953-960.

DOI: 10.1016/s0022-3697(02)00454-7

Google Scholar

[15] T. D. Dunber, W. L. Warren, B. A. Tuttle, C. A. Randall, T. Tsur, Electron paramagnetic resonance investigation of lanthanide-doped barium titanate: dopant site occupancy, J. Phys. Chem. B 108 (2004) 908-917.

DOI: 10.1021/jp036542v

Google Scholar

[16] D.-Y. Lu, M. Toda, T. Ogata, X.-Y. Sun, Point defect characteristics of high-k double rare-earth-doped BaTiO3 ceramics with diffuse phase transition by electron spin resonance, Jpn. J. Appl. Phys. 48 (2009) 021401.

DOI: 10.1143/jjap.48.021401

Google Scholar

[17] D.-Y. Lu, Q.-L. Liu, Y.-L. Dong, H. Huang, D.-D. Han, L. Zhang, Temperature calibration of temperature camera on domestic X-ray diffractometer, Mod. Sci. Instr. 2 (2012) 89-93.

Google Scholar