One-Pot Synthesis of Carbon-Coated ZnFe2O4 with Excellent Electrochemical Performance as an Anode in Lithium Ion Battery

Article Preview

Abstract:

Carbon-coated ZnFe2O4 lithium anode with nanosize has been successfully synthesized by a one-pot green-chemical hydrothermal reaction with glucose as carbon source. An analysis of electrochemical performance showed that the prepared carbon-coated ZnFe2O4 anode exhibited high capacity retention. The initial charge-discharge specific capacity was approximately 1388 mAhg-1 and 1008 mAhg-1, respectively. And a reversible specific capacity could be maintained about 700 mAhg-1 after 100 cycles at a constant current density of 100 mAg-1, indicating good cycle ability compared with majority reported literatures. The excellent electrochemical performance was related to the carbon coating and nanoparticles, with which the electric conductivity of the material increased and the volume expansion and pulverization of the particles became increasingly reduced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

1037-1041

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Tarascon, M.Armand: Nature.Vol.414 (2001), p.359 Affiliation Information 1. Fiber and Polymer Science Program,Department of Textile Engineering,Chemistry and Science,North Carolina State University, Raleigh, USA

Google Scholar

[2] L.W. Ji, Zhan Lin, M. Alcoutlabi ,X.W. Zhang: Energy Environ. Sci. Vol. 4 (2011), p.2682

Google Scholar

[3] L.G. Lu, X.B. Han, J.D. Li, J.F. Hua, M.G. Ouyang: J Power Sources. Vol. 226 (2013), p.272

Google Scholar

[4] C.T. Cherian, M.V. Reddy, G. V. Subba Rao, C.H. Sow, B.V.R. Chowdari: J Solid State Electrochem. Vol.16 (2012), p.1823

Google Scholar

[5] Y .NuLi, Y.Q. Chu, Q.Z. Qin: J Electrochemical Society. Vol. 151 (2004), p.1077

Google Scholar

[6] S .Zahi, A.R. Daud, M .Hashim: Mater Chem Phy. Vol. 106 (2007), p.452

Google Scholar

[7] X.W. Guo, X. Lum, X.P. Fang, Y .Mao, Z.X. Wang, L.Q. Chen, X.X .Xu, H. Yang, Y.N. Liu: Electrochem Commun. Vol. 12 (2010), p.847

Google Scholar

[8] M.M. Bahout, S .Bertrand, O. Pena: J Solid State Chem. Vol. 178 (2005), p.1080

Google Scholar

[9] Y .Ding, Y.F. Yang, H.X. Shao: Electrochim Acta. Vol. 56 (2011), p.9433

Google Scholar

[10] Y .Sharma, N .Sharma, G.V. Subba Rao, B.V.R. Chowdari: Electrochim Acta. Vol. 53 (2008), p.2380

Google Scholar

[11] Y.F. Deng, Q .Zhang, S.D. Tang, L.T. Zhang, S.N. Deng, Z.C. Shi, G.H. Chen: Chem Commun , Vol. 47(2011) , p.6828

Google Scholar

[12] H.Y. Xu, X.L. Chen, L.Chen, L.E. Li, L.Q. Xu, J. Yang, Y.T. Qian: Int. J Electrochem Sci. Vol. 7(2012), p.7976

Google Scholar

[13] X.W. Guo, X.Lum, X.P. Fang, Y.Mao, Z.X. Wang, L.Q. Chen, X.X .Xu, H.Yang, Y.N. Liu: Electrochem Commun. Vol. 12(2010), p.847

Google Scholar

[14] Z.Xing, Z.C.Ju, J.Yang, H.Y.Xu,Y.T. Qian: Nano Res. Vol.5(2012), p.477

Google Scholar

[15] V. G.Khomenko, V.Z. Barsukov: Electrochim Acta. Vol.52 (2007), p.2829

Google Scholar

[16] X.W. Lou, J.S. Chen, P.Chen, L. A. Archer: Chem. Mater. Vol.21 (2009), p.2868

Google Scholar

[17] M.Noh, Y.Kwon, H.Lee, J.Cho, Y.Kim, M. G Kim: Chem.Mater. Vol.17 ( 2005), p.1926.

Google Scholar