Pyrolysis Characteristics of Long Flame Coal

Article Preview

Abstract:

Applying thermogravimetry coupled with mass spectrometry, a pyrolysis analysis of a long flame coal from Chinese Hami was carried out. The results show: In the temperature range between 400°C and 600°C, the degradation of the carbonaceous matrix and the evolution of relatively high molecular weight species result in the abundant release of CH4, C3H6, C6H6, C7H8, C8H10 and otherwise gas in the coal sample. The weight loss between 400°C and 600°C occupies a main proportion in the total weight loss. In the temperature range between 600°C and 900°C, the condensation of the aromatic ring and the decomposition of mineral matter result in the abundant release of H2, CO2, C6H6 and otherwise gas.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

1042-1045

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y Mahidin and Yuji Ogaki, Hiromoto Usui, Osamu Okuma. The advantages of vacuum-treatment in the thermal upgrading of low-rank coals on the improvement of dewatering and devolatilization. Fuel Proc. Technol. Vol.84 (2003), p.147

DOI: 10.1016/s0378-3820(03)00052-3

Google Scholar

[2] M. Sakaguchi, K. Laursen, H. Nakagawa and K. Miura. Hydrothermal upgrading of Loy Yang Brown coal — Effect of upgrading conditions on the characteristics of the products. Fuel Proc. Technol. Vol.89 (2008), p.391

DOI: 10.1016/j.fuproc.2007.11.008

Google Scholar

[3] Y.P. Zhao, H.Q. Hu, L.J. Jin, B.Wu and S.W. Zhu. Pyrolysis Behavior of Weakly Reductive Coals from Northwest China. Energy & Fuels Vol.23 (2010), p.870

DOI: 10.1021/ef800831y

Google Scholar

[4] Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He and S.W. Zhu. Pyrolysis behavior of macerals from weakly reductive coals. Energy & Fuels 2010; Vol.24 (2010), p.6314

DOI: 10.1021/ef101026u

Google Scholar

[5] Y.P. Zhao, H.Q. Hu, L.J. Jin, X.F. He and B.Wu. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor. Fuel Proc. Technol. Vol.92 (2011), p.780

DOI: 10.1016/j.fuproc.2010.09.005

Google Scholar

[6] A. Arenillas, F. Rubiera and J.J. Pis. Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. J. Anal. Appl. Pyrolysis Vol.50 (1999), p.31–46.

DOI: 10.1016/s0165-2370(99)00024-8

Google Scholar

[7] A. Arenillas, F. Rubiera, J.J. Pis, M.J. Guesta, M.J. Iglesias, A. Jimenez, et al. Thermal behavior during the pyrolysis of low rank perhydrous coals. J. Anal. Appl. Pyrolysis; Vol. 68-69 (2003), p.371

DOI: 10.1016/s0165-2370(03)00031-7

Google Scholar

[8] S. Porada. The reactions of formation of selected gas products during coal pyrolysis. Fuel Vol.83 (2004), p.1191

DOI: 10.1016/j.fuel.2003.11.007

Google Scholar

[9] T.K. Das. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals. Fuel Vol.80 (2001), p.489

DOI: 10.1016/s0016-2361(00)00126-5

Google Scholar

[10] H. Chen, B. Li and B. Zhang. Effects of mineral matter on products and sulfur distributions in hydropyrolysis. Fuel Vol.78 ( 1999), p.713

DOI: 10.1016/s0016-2361(98)00195-1

Google Scholar