Magnesium Hydride of Orthorhombic Crystal from High-Energy Ball Milling under Hydrogen Atmosphere

Article Preview

Abstract:

The crystal structure of magnesium hydride affects the properties of magnesium for hydrogen storage. The crystal phase and dehydriding temperature of magnesium hydride from magnesium by high-energy ball milling under hydrogen atmosphere with anthracite carbon, which was prepared from anthracite coal by demineralization and carbonization, as milling aid was investigated. The HRTEM observation and XRD characterization showed that the Mg hydrided into nanocrystalline β-MgH2 of tetrahedral crystal structure and γ-MgH2 of orthorhombic crystal structure during milling under 1 MPa of hydrogen, and the γ-MgH2 increased with the extension of milling time. The DSC analysis showed that the endothermic peak of γ-MgH2 was 53 °C lower than that of β-MgH2 in the material from 10 h of milling.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

1033-1036

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Bogdanović, K. Bohmhammel and B. Christ et al: J Alloys Compd. Vol. 282 (1999), p.84

Google Scholar

[2] J.F. Fernández and C.R. Sánchez: J Alloys Compd. Vol. 340 (2002), p.189

Google Scholar

[3] M.G. Chourashiya, D.C. Yang and S.Y. Kim et al: Mater Lett. Vol. 66 (2012), p.42

Google Scholar

[4] R.A. Varin, T. Czujko and Z.P. Wronski: Nanotechnology. Vol. 17 (2006), p.3856

Google Scholar

[5] N. Mahmoudi, A. Kaflou and A. Simchi: Mater Lett.Vol. 65 (2011), p.1120

Google Scholar

[6] J. Huot, G. Liang and S. Boily et al: J Alloys Compd. Vol. 293-295 (1999), p.495

Google Scholar

[7] H. Shao, M. Felderhoff and F. Schüth: Int J Hydrogen Energy. Vol. 36 (2011), p.10828

Google Scholar

[8] V. Fahimpour and S.K. Sadrnezhaad: Mater Lett.Vol. 85 (2012), p.128

Google Scholar

[9] F.C. Gennari, F.J. Castro and G. Urretavizcaya: J Alloys Compd.Vol. 321 (2001), p.46

Google Scholar

[10] H. Imamura, K. Masanari and M. Kusuhara et al: J Alloys Compd. Vol. 386 (2005), p.211

Google Scholar

[11] A. Montone, J. Grbović and A. Bassetti et al: Int J Hydrogen Energy. Vol. 31 (2006), p. (2088)

Google Scholar

[12] Z.G. Huang, Z.P. Guo and A.Calka et al: Mater Lett. Vol. 61 (2007), p.3163

Google Scholar

[13] H. Gasan, O.N. Celik and N. Aydinbeyli et al: Int J Hydrogen Energy. Vol. 37 (2012), p. (1912)

Google Scholar

[14] A. Ranjbar, M. Ismail and Z.P. Guo et al: Int J Hydrogen Energy. Vol. 35 (2010), p.7821

Google Scholar

[15] R. Oriňáková and A. Oriňák: Fuel. Vol. 90 (2011), p.3123

Google Scholar

[16] Z.G. Huang, Z.P. Guo and A. Calka et al: J Alloys Compd. Vol. 427 (2007), p.94

Google Scholar

[17] A.D. Rud, A.M. Lakhnik and V.G. Ivanchenko et al: Int J Hydrogen Energy.Vol. 33 (2008), p.1310

Google Scholar

[18] D.L. Narayanan and A.D. Lueking: Carbon. Vol. 45 (2007), p.805

Google Scholar