Conversion of Glucose into 5-Hydroxymethylfurfural with WO3 - MoO3 Mixed Metal Oxides

Article Preview

Abstract:

5-hydroxymethylfurfural (HMF) was produced from glucose using WO3-MoO3 mixed metal oxides as the catalyst in a biphasic system (H2O-NaCl/THF), comprised of reactive aqueous phase saturated with NaCl, and containing AlCl3.6H2O, combined with an organic extracting phase consisting of tetrahydrofuran (THF). The influences of different catalysts, initial concentrations of glucose and reaction time on preparation of HMF were investigated. As a result, A HMF yield of 61% could be obtained at 170 °C in 40 min. Recycle of the aqueous phase and WO3-MoO3 demonstrated constant activity after 4 cycles of use.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

365-368

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Corma A, Iborra S, Velty A: Chem. Rev. Vol. 107 (2007), p.2411

Google Scholar

[2] Ruppert A M, Weinberg K, Palkovits R: Angew. Chem. Int. Ed. Vol. 51 (2012), p.2564

Google Scholar

[3] Roman-Leshkov Y, Barrett C J, Liu Z Y, et al: Nature Vol. 447 (2007), p.892

Google Scholar

[4] Buntara T, Noel S, Phua P H, et al: Angew. Chem., Int. Ed. Vol. 50 (2011), p.7083

Google Scholar

[5] Gandini A, Belgacem M N: Prog. Polym. Sci. Vol. 22 (1997), p.1203

Google Scholar

[6] Kuster B F M: Starch/Staerke Vol. 42 (1990), p.314

Google Scholar

[7] Shimizu K, Uozumi R., Satsuma A: Catal. Commun. Vol. 10 (2009), p.1849

Google Scholar

[8] Roman-Leshkov Y, Chheda J N, Dumesic J A: Science Vol. 312 (2006), p. (1933)

Google Scholar

[9] Roman-Leshkov Y, Dumesic J A: Top. Catal. Vol. 52 (2009), p.297

Google Scholar

[10] Zhao H B, Holladay J E, Brown H, et al: Science Vol. 316 (2007), p.1597

Google Scholar

[11] Yong G, Zhang Y G, Ying J Y: Angew. Chem., Int. Ed. Vol. 2008 120 (2008), p.9345

Google Scholar

[12] Y J Pagán-Torres, Tianfu Wang, J M R Gallo, et al: ACS Catal. Vol. 2 (2012), p.930

Google Scholar

[13] Nikolla E, Roman-Leshkov Y, Moliner M, et al: ACS Catal. Vol. 1 (2011), p.408

Google Scholar

[14] Yang Y, Hu C, Abu-Omar: Green Chem. Vol. 14 (2012), p.509

Google Scholar

[15] Tianfu Wang, Yomaira J. Paga´n-Torres, Elliot J. Combs, et al: Top Catal. 2012, p.1

Google Scholar

[16] Jin Xiongjie, T Oishi, K Yamaguchi, et al: Chemistry-A European Journal Vol. 17 (2011), p.1261

Google Scholar

[17] Yamaguchi K, Sakurada T, Ogasawara Y, et al: Chem. Lett. Vol. 40 (2011), p.542

Google Scholar

[18] Roman-Leshkov Y, Moliner M, Labinger J A: Angew. Chem. Int. Ed. Vol. 49 (2010), p.8954

Google Scholar

[19] Vandam H E, Kieboom A P G, Vanbekkum H: Starch/Staerke Vol. 38 (2006), p.95

Google Scholar

[20] Chheda J N, Roman-Leshkov Y, Dumesic J A: Green Chem. Vol. 9 (2007), p.342

Google Scholar

[21] Brown D W, Floyd A J, Kinsman R G, et al: J. Chem. Technol. Biotechnol. Vol. 32 (1982), p.920

Google Scholar

[22] Yang Y, Hu Cw, Abu-Omar M M: Bioresource Technology Vol. 116 (2012), p.190

Google Scholar