Inhibitory Effect of Hydrilla Verticillata on Planktonic Algae in Eutrophic Water

Article Preview

Abstract:

The experiment adopted the method of cultivating Hydrilla verticillata and algae in coexistence systems to study the inhibitory effect of Hydrilla verticillata on planktonic algae in eutrophic water. The results showed that allelopathic and competition of nutrition inhibitory effect were both affect the inhibition of Hydrilla verticillata on planktonic algae at initial concentration of 105 cells·mL-1, and the highest inhibition ratio on was 79% at undernutrition condition; opposite, allelopathic inhibitory effect played a major role at nutritional sufficiency, the highest inhibition ratio was 39%. Hydrilla verticillata played a role of “promoting with low biomass while inhibiting with high biomass” on planktonic algae, the optimal biological dosage of Hydrilla verticillata on inhibiting planktonic algae at initial concentration of 105 cells·mL-1 was 12g·L-1. Hydrilla verticillata all produced inhibitory effect on planktonic algae at different initial concentrations, and the greater the initial concentration of planktonic algae, the higher the inhibition ratio of Hydrilla verticillata on planktonic algae.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

141-146

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tang Y, Zhang H, Liu X. A., Cai D. Q., Feng H. Y., Miao C. G., Wang X. Q., Wu Z. Y., Yu Z. L.. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation. Water Res.. 45(2011), 2855-2862.

DOI: 10.1016/j.watres.2011.03.003

Google Scholar

[2] Hudnell H. K.. The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. Toxicon. 55(2010), 1024-1034.

DOI: 10.1016/j.toxicon.2009.07.021

Google Scholar

[3] Dodds, W.K., Bouska, W.W., Eitzmann, J.L., Pilger, T.J., Pitts, K.L., Riley, A.J. Schloesser, J.T., Thornbrugh, D.J.. Eutrophication of U.S. fresh waters:analysis of potential economic damages. Environ. Sci. Technol. 43(2009), 12-19.

DOI: 10.1021/es801217q

Google Scholar

[4] Wu C., Chang X. X., Dong H. J., Li D. F., Liu J. Y.. Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecologica Sinica. 28(2008), 2595-2603.

DOI: 10.1016/s1872-2032(08)60061-x

Google Scholar

[5] Ni L. X., Achary K., Hao X. Y., Li S. Y.. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere. 88(2012), 1051-1057.

DOI: 10.1016/j.chemosphere.2012.05.009

Google Scholar

[6] Mulderij, G.. Chemical Warfare in Freshwater-Allelopathic Effects of Macrophytes on Phytoplankton. The Netherands: Netherlands Institute of Ecology. (2006).

Google Scholar

[7] Della Greca M., Fiorentio A., Isidori M.. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry. 60(2002), 633-638.

DOI: 10.1016/s0031-9422(02)00152-8

Google Scholar

[8] Gross E. M., Erhard D., Ivanyi E.. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia. (2003),506-589.

DOI: 10.1023/b:hydr.0000008539.32622.91

Google Scholar

[9] Peng J. F., Song Y. H., Liu Z. H., Gao H. J., Yu H. B.. Performance of a novel Circular-Flow Corridor wetland toward the treatment of simulated high-strength swine wastewater. Ecol. Eng.. 49(2012), 1-9.

DOI: 10.1016/j.ecoleng.2012.08.005

Google Scholar

[10] Huang X. F.. Survey, Observation and Analysis of Lake Ecology. China Standard Press, Beijing. (2000).

Google Scholar

[11] Korner S., Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol.. 38(2002), 862-871.

DOI: 10.1046/j.1529-8817.2002.t01-1-02001.x

Google Scholar

[12] Nakai S., Inoue Y., Hosomi M., Murakami A.. Growth inhibition of blue-green algae by allelopathic effects of macrophytes. Wat. Sci. Tech.. 39(1999), 47-53.

DOI: 10.2166/wst.1999.0382

Google Scholar

[13] Nakai S., Hosomi M., Okada M., Murakami A.. Control of algal growth by macrophytes and macrophyte-extracted bioactive compounds. Wat. Sci. Tech.. 34(1996), 227-235.

DOI: 10.2166/wst.1996.0626

Google Scholar

[14] Zeng Y.. A risk assessment on the alga bloom in city-a case of the "six seas" urban lakes in Beijing. Procedia Environmental Sciences. 2(2010), 1501-1509.

DOI: 10.1016/j.proenv.2010.10.163

Google Scholar

[15] Ni J. J., Yu Y. H., Feng W. S., Yan Q. Y., Pan G., Yang B., Zhang X., Li X. M.. Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake, China. J Environ Sci-China. 22(2010), 1500-1507.

DOI: 10.1016/s1001-0742(09)60270-9

Google Scholar