Modelling Mosquito Population Dynamics: The Impact of Resource and Temperature

Article Preview

Abstract:

Understanding the population dynamics of mosquitoes is fundamental to the study of the epidemiology of mosquito-borne diseases for the purpose of optimal control and prevention. In this paper, we presented a brief survey for former models for mosquito population and claimed that the effect of limited resource and temperature are important for the population dynamics of mosquito which should be considered in mosquito models.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

156-159

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Bowman, A. B. Gumel, J. Wu, P. van den Driessche and H. Zhu: Bull. Math. Biol. 67 (2005), P. 1107

Google Scholar

[2] G. Cruz-Pacheco, L. Esteva, J. Montao-Hirose and C. Vargas: Bull. Math. Biol. 67 (2005), P. 1157

Google Scholar

[3] L. Esteva and C. Vargas: J. Math. Biol. 38 (1999), P. 220

Google Scholar

[4] L. Esteva and C. Vargas: Mathematical Biosciences 150 (1998), P. 131

Google Scholar

[5] L. Esteva and C. Vargas: Influence of vertical and mechanical transmission on the dynamics of dengue disease. Mathematical Biosciences 167 (2000), P. 51

DOI: 10.1016/s0025-5564(00)00024-9

Google Scholar

[6] Z. Feng and J. X. Velasco-Hernadez: J. Math. Biol. 35 (1997), P. 523

Google Scholar

[7] C. C. Lord and J. F. Day: Vector Borne and Zoonotic Diseases, 1 (2001), P. 317

Google Scholar

[8] J. Arino, L. Wang and G. S. K. Wolkowicz: J. Theor. Biolo. 241 (2006), P. 109

Google Scholar

[9] S. P. Blythe, R. M. Nisbet and W. S. C. Gurney: Theor. Population Biol. 22 (1982), P. 147

Google Scholar

[10] K. Cooke, P. van den Driessche and X. Zou: J. Math. Biol. 39 (1999), P. 332

Google Scholar

[11] G. E. Hutchinson: Ann. NY Acad. Sci. 50 (1948), P. 221

Google Scholar

[12] D. J. Rodríguez: J. Theor. Biol. 191 (1998), P. 95

Google Scholar

[13] P. F. Verhulst: Correspondence Math. Phys. 10 (1838), P. 113

Google Scholar

[14] R. Ross: The Prevention of Malaria (Murry Publications, London 1911).

Google Scholar

[15] J. D. Murray, In: Interdisciplinary Applied Mathematics, edited by S. S. Antman, J. E. Marsden, L. Sirovich, S.Wiggins, Publications/Springer-Verlag, New York, Berlin, Heidelberg (2002).

Google Scholar

[16] N. Chitnis, J. M. Cushing and J. M. Hyman: SIAM J. Appl. Math. 67 (2006), P. 24

Google Scholar

[17] G. A. Ngwa and W. S. Shu: Mathematical and Computer Modelling 32 (2000), P. 747

Google Scholar

[18] W. J. Cunningham: Proc. Natl Acad. Sci. 40 (1954), P. 708

Google Scholar