Volumetric Assessment of Leachate from Solid Waste Using 2D and 3D Electrical Resistivity Imaging

Article Preview

Abstract:

This paper presents an approach to estimate volume of leachate from municipal solid waste using 2D and 3D electrical resistivity imaging. This process is a deviation from Water Balance Method (WBM) that is commonly used for leachate quantification at landfill sites. While the WBM emphasis is on generating rate, this geophysical approach estimates the in-situ total quantity of leachate. Five 100m profiles were used to generate five 2D inverted pseudo-sections and a 3D inverted section using RES2DINV and RES3DINV programs respectively. The resistivity of inverted pseudo-sections clearly delineated the contaminant leachate plume (ρ < 5 Ωm), which facilitated its volume estimation. The effective porosity values of clay (0.15) and sand/gravel (0.28) deduced from lithology logs were used in calculating the imaged volume of the leachate. To confirm the measured resistivity variation in the saturated subsurface around the dumpsite, in-situ electrical conductivity values of 1782 μS/cm and 4521 μS/cm were determined for uncontaminated and contaminated zones respectively. A total leachate volume of 2.21 x 103 was estimated for the 1600 survey area.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

3014-3022

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kumar and B. J. Alappat., Analysis of leachate contamination potential of a municipal landfill using leachate pollution index. Workshop on sustainable landfill management Chennai, India, (2003).

DOI: 10.1007/s10098-004-0269-4

Google Scholar

[2] D. Guyonnet, B. Didier-Guelorget, G. Provost and C. Feuillet., Accounting for water storage effects in landfill leachate modelling. Waste Management & Research vol. 16(3), (1998), 285-295

DOI: 10.1177/0734242x9801600310

Google Scholar

[3] A. Kortegast, S. Eldridge, B. Richards, S. Yong, E. Chock, A. Bryce and M. Carville., Leachate generation and treatment at the Bukit Tagar landfill, Malaysia. Sardina eleventh international waste management and andfill symposium, Italy (2007).

Google Scholar

[4] W. E.Woldt, M. E. Hagemeister and D. D. Jones, Characterization of an unregulated landfill using surface‐based geophysics and geostatistics. Ground water vol. 36(6) (1998), 966-974.

DOI: 10.1111/j.1745-6584.1998.tb02103.x

Google Scholar

[5] M. T. O. D. Velásquez, R. Cruz-Rivera, N. Rojas-Valencia, I. Monje-Ramírez and J.Sánchez-GóMez, Sánchez-gómez. Serial water balance method for predicting leachate generation in landfills. Waste Management & Research Vol. 21(2), (2003) 127-136

DOI: 10.1177/0734242x0302100206

Google Scholar

[6] E. Safari and C. Baronian, Modeling temporal variations in leachate quantity generated at Kahrizak landfill. Proceedings of international environmental modeling software society, switzerland (2002).

Google Scholar

[7] R. D. H. Bugan, N. Z. Jovanovic and W. P. D. Clercq., The water balance of a seasonal stream in the semi-arid western cape (South Africa). Water SA, Vol. 38(2) (2012).

DOI: 10.4314/wsa.v38i2.5

Google Scholar

[8] R. Parsons., A review of approaches and methodologies for determining leachate generation at waste disposal sites and groundwater recharge: Water Research Commission, South Africa (1994).

Google Scholar

[9] G. Tchobanoglous, H. Theisen and S. S. Vigil, Integrated solid waste management, Mcgraw-Hill, New York ,1993.

Google Scholar

[10] C. Bernstone and T. Dahlin., Assessment of two automated electrical resistivity data acquisition systems for landfill location surveys: Two case studies. Journal of Environmental and Engineering Geophysics Vol. 4, (1999) 113

DOI: 10.4133/jeeg4.2.113

Google Scholar

[11] H. Rosqvist, T. Dahlin, A. Fourie, L. Röhrs, A. Bengtsson and M. Larsson, Mapping of leachate plumes at two landfill sites in South Africa using geoelectrical imaging techniques. Sardina proceedings of the 9th international waste management and landfill symposium (2003).

Google Scholar

[12] A. T. Ustra, V. R. Elis, G. Mondelli, L. V. Zuquette and H. L. Giacheti., Case study: A 3d resistivity and induced polarization imaging from downstream a waste disposal site in brazil. Environmental Earth Sciences Vol. 66(3), (2012) 763-772

DOI: 10.1007/s12665-011-1284-5

Google Scholar

[13] A. M. Ahmed and W. A. N. Sulaiman, Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Environmental Management Vol. 28(5) , (2001) 655-663

DOI: 10.1007/s002670010250

Google Scholar

[14] R. Guérin, M. L. Munoz, C. Aran, C. Laperrelle, M. Hidra, E. Drouart and S. Grellier, Leachate recirculation: Moisture content assessment by means of a geophysical technique. Waste Management, Vol. 24(8) (2004) 785-794.

DOI: 10.1016/j.wasman.2004.03.010

Google Scholar

[15] A. R. Samsudin, B. E. A. Rahim, W. Z. W. Yaacob and U. Hamzah, Mapping of contamination plumes at municipal solid waste disposal sites using geoelectric imaging technique: Case studies in Malaysia. Journal of Spatial Hydrology vol. 6(2). (2006) 13-22

Google Scholar

[16] V. Frid, G. Liskevich, D. Doudkinski and K. N, Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environmental Geology Vol. 53(7), (2008) 1503-1508

DOI: 10.1007/s00254-007-0761-3

Google Scholar

[17] G. E. Archie., The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIMe Vol. 146(99), (1942) 54-62

DOI: 10.2118/942054-g

Google Scholar

[18] Q. Y. Zhou, J. Shimada and A. Sato, Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research Vol. 37(2), (2001) 273-285

DOI: 10.1029/2000wr900284

Google Scholar

[19] A. P. Aizebeokhai, O. A and V. Singh., Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern nigeria. Environmental Earth Sciences, Vol. 61(7), (2010)1481-1492.

DOI: 10.1007/s12665-010-0464-z

Google Scholar

[20] A. Adepelumi, B. Ako and T. Ajayi., Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method. Hydrogeology Journal Vol. 9(6) (2001) 611-622

DOI: 10.1007/s10040-001-0160-x

Google Scholar

[21] C. Bernstone, T. Dahlin, T. Ohlsson and H. Hogland, DC-resistivity mapping of internal landfill structures: Two pre-excavation surveys. Environmental Geology,Vol.39(3), (2000) 360-371

DOI: 10.1007/s002540050015

Google Scholar

[22] A. Imam, B. Mohammed, D. Wilson and Cheeseman, Solid waste management in Abuja, Nigeria. Waste Management. Vol. 28(2) (2008) 468-472

DOI: 10.1016/j.wasman.2007.01.006

Google Scholar

[23] R. T. Hazell., Development of groundwater resources for farming communities in bauchi state, Nigeria. Memoires of the 18th congress of the international association of hydrogeologists, Cambridge (1985).

Google Scholar

[24] M. H. Loke., Tutorial: 2-d and 3-d electrical imaging surveys, Geotomo Software, Malaysia, (2012).

Google Scholar

[25] W. Lowrie, Fundamentals of geophysics, 2nd edition. Cambridge University Press, 2007.

Google Scholar

[26] M. H. Loke and R. D. Barker., Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐newton method. Geophysical Prospecting, vol. 44(1), (1996a) 131-141 .

DOI: 10.1111/j.1365-2478.1996.tb00142.x

Google Scholar

[27] M. H. Loke and T. Dahlin, A comparison of the gauss-newton and quasi-newton methods in resistivity imaging inversion. Journal of Applied Geophysics, Vol. 49(3), (2002) 149-162.

DOI: 10.1016/s0926-9851(01)00106-9

Google Scholar

[28] M. H. Loke and R. D. Barker, Practical techniques for 3D resistivity surveys and data inversion1. Geophysical Prospecting Vol. 44(3), (1996b) 499-523

DOI: 10.1111/j.1365-2478.1996.tb00162.x

Google Scholar

[29] R. Clément, L. Oxarango, and M. Descloitres, Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill. Waste Management, Vol. 31(3), (2011) 457-467.

DOI: 10.1016/j.wasman.2010.09.005

Google Scholar