[1]
B.G. V. Kumar and R. Aravind: Computationally efficient algorithm for face super-resolution using (2D)2-PCA based prior, IET Image Process, Vol. 4, No. 2 (2010), p.61–69.
DOI: 10.1049/iet-ipr.2009.0072
Google Scholar
[2]
F. Yang, H. Lu, W. Zhang, G. Yang: Visual tracking via bag of features, IET Image Process, Vol. 6, No. 2 (2012), p.115–128.
DOI: 10.1049/iet-ipr.2010.0127
Google Scholar
[3]
G. Yang, X. Xi, Y. Yin: Finger-vein Recognition Based on (2D)2 PCA and Metric Learning, Journal of Biomedicine and Biotechnology, Vol. 2012 (2012), Article ID 324249.
DOI: 10.1155/2012/324249
Google Scholar
[4]
H.S. Wang, Y.N. Wang, Y.C. Wang: Cost estimation of plastic injection molding parts through integration of PSO and BP neural network, Expert Systems with Applications, Vol. 40 (2013), p.418–428.
DOI: 10.1016/j.eswa.2012.01.166
Google Scholar
[5]
H. Wang, Y. Leng, Z. Wang, X. Wu: Application of image correction and bit-plane fusion in generalized PCA based face recognition, Pattern Recognition Letters, Vol. 28, No. 16 (2007), pp.2532-2358.
DOI: 10.1016/j.patrec.2007.07.015
Google Scholar
[6]
S. Osowski, S. Lukasiewicz: PCA transformation and Support Vector Machine for recognition of the noisy images, PRZEGLAD ELEKTROTECHNICZNY, Vol. 88, No. 3A (2012), pp.4-6.
Google Scholar
[7]
Y. He, Y. Tan, Y. Sun: Wavelet neural network approach for fault diagnosis of analogue circuits, in Proc. Circuits Devices Syst., Vol. 151, No. 4 (2004), p.379–384.
DOI: 10.1049/ip-cds:20040495
Google Scholar
[8]
Y. W. Pang, J.P. Deng, Y. Yuan: Incremental threshold learning for classifier selection, NEUROCOMPUTING, Vol. 89 (2012), pp.89-95.
DOI: 10.1016/j.neucom.2012.01.012
Google Scholar
[9]
Z. Zhang, C. Wang: The Research of Vehicle Plate Recognition Technical Based on BP Neural Network, AASRI Procedia, Vol. 1 (2012), pp.74-81.
DOI: 10.1016/j.aasri.2012.06.013
Google Scholar
[10]
M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai, H. Ueno: Adaptive visual gesture recognition for human–robot interaction using a knowledge-based software platform, Robotics and Autonomous Systems, Vol. 55, No. 8 (2007).
DOI: 10.1016/j.robot.2007.03.002
Google Scholar
[11]
Y. Zhu, G. Xu, D. J. Kriegman: A Real-Time Approach to the Spotting, Representation, and Recognition of Hand Gestures for Human–Computer Interaction, Computer Vision and Image Understanding, Vol. 85, No. 3 (2002), pp.189-208.
DOI: 10.1006/cviu.2002.0967
Google Scholar
[12]
J. Liu, L. Zhong, J. Wickramasuriya, V. Vasudevan: uWave: Accelerometer-based personalized gesture recognition and its applications, Pervasive and Mobile Computing, Vol. 5, No. 6 (2009), pp.657-675.
DOI: 10.1016/j.pmcj.2009.07.007
Google Scholar
[13]
M. C. Shin, L. V. Tsap, D. B. Goldgof: Gesture recognition using Bezier curves for visualization navigation from registered 3-D data, Pattern Recognition, Vol. 37, No. 5 (2004), pp.1011-1024.
DOI: 10.1016/j.patcog.2003.11.007
Google Scholar
[14]
F. Chen, C. Fu, C. Huang: Hand gesture recognition using a real-time tracking method and hidden Markov models, Image and Vision Computing, Vol. 21, No. 8 (2003), pp.745-758.
DOI: 10.1016/s0262-8856(03)00070-2
Google Scholar
[15]
Chung-Lin Huang, Ming-Shan Wu, Sheng-Hung Jeng: Gesture recognition using the multi-PDM method and hidden Markov model, Image and Vision Computing, Vol. 18, No. 11 (2000), pp.865-879.
DOI: 10.1016/s0262-8856(99)00042-6
Google Scholar