A New Piecewise Rational Reparameterization Method

Article Preview

Abstract:

A new piecewise rational re-parameterization of a polynomial curve is presented. The method relies on a parametric polygonal decomposition method. With the proposed piecewise rational re-parameterization method, the optimal parameterization can be reached, and the optimal parameterizations asymptotic convergence to the arc-length parameterization is analyzed. Computing instances demonstrates the efficiency of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

3057-3060

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yi-Jun Yang, Wei Zeng, Cheng-Lei Yang, Bailin Deng, Xiang-Xu Meng, S. Sitharama Iyengar. An algorithm to improve parameterizations of rational Bézier surfaces using rational bilinear reparameterization. Computer-Aided Design 45, pp.628-638, (2013).

DOI: 10.1016/j.cad.2012.10.048

Google Scholar

[2] Fiorot, J.C., Cattiaux, I. Uniform point-distribution on a circle. In: Rabut, C., Le Méhaut é, A., Schumaker, L.L. (Eds. ), Curves in Surfaces with Application in CAGD. Vanderbilt University Press, Nashville, TN, pp.103-110, (1997).

Google Scholar

[3] Hernández-Mederos, V., Estrada-Sarlabous, J. Sampling points on regular parametric curves with control of their distribution. Computer Aided Geometric Design 20, 363-382, (2003).

DOI: 10.1016/s0167-8396(03)00079-7

Google Scholar

[4] Jüttler, B. A vegetarian approach to optimal parameterizations. Computer Aided Geometric Design 14, 887-890, (1997).

DOI: 10.1016/s0167-8396(97)00044-7

Google Scholar

[5] Isabelle Cattiaux-Huillard, Gudrun Albrechta, Victoria Hernández-Mederos. Optimal paramete- rization of rational quadratic curves. Computer Aided Geometric Design 26, 725-732, (2009).

DOI: 10.1016/j.cagd.2009.03.008

Google Scholar

[6] Casciola, G., Morigi, S. Reparametrization of NURBS curves. International Journal of Shape Modeling 2, 103-116. Noyes Publications/William Andrew Publising, Norwich, NY (2004).

DOI: 10.1142/s0218654396000075

Google Scholar

[7] Farouki, R.T. Optimal parameterizations. Computer Aided Geometric Design 14, 153-68, (1997).

DOI: 10.1016/s0167-8396(96)00026-x

Google Scholar

[8] Blanc, C., Schlick, C., 1996. Accurate parametrization of conics by NURBS. IEEE Computer Graphics and Applications 16, 64-71.

DOI: 10.1109/38.544074

Google Scholar

[9] Wever, U., 1991. Optimal parameterization for cubic splines. Computer-Aided Design 23, 641-644.

DOI: 10.1016/0010-4485(91)90041-t

Google Scholar

[10] Paolo Costantini, Rida T. Farouki, Carla Manni, Alessandra Sestini. Computation of optimal composite re-parameterizations. CAGD 18, pp.875-897, (2001).

DOI: 10.1016/s0167-8396(01)00071-1

Google Scholar

[11] Filip D, Magedson R, Markot R. Surface algorithms using bounds on derivatives. Computer-Aided Geometric Design1986; 3(4): 295-311.

DOI: 10.1016/0167-8396(86)90005-1

Google Scholar