[1]
X. Li: A scalable decision tree system and its application in pattern recognition and intrusion detection, Decision Support Systems, Vol. 41, No. 1 (2005), pp.112-130.
DOI: 10.1016/j.dss.2004.06.016
Google Scholar
[2]
H. Jiang, K. Hirose, Q. Huo: Improving Viterbi Bayesian predictive classification via sequential bayesian learning in robust speech recognition, Speech Communication, Vol. 28, No. 4 (1999), pp.313-326.
DOI: 10.1016/s0167-6393(99)00018-7
Google Scholar
[3]
M. Castellani, H. Rowlands: Evolutionary Artificial Neural Network Design and Training for wood veneer classification, Engineering Applications of Artificial Intelligence, Vol. 22, No. 4-5 (2009), pp.732-741.
DOI: 10.1016/j.engappai.2009.01.013
Google Scholar
[4]
I. Hmeidi, B. Hawashin, E. El-Qawasmeh: Performance of KNN and SVM classifiers on full word Arabic articles, Advanced Engineering Informatics, Vol. 22, No. 1 (2008), pp.106-111.
DOI: 10.1016/j.aei.2007.12.001
Google Scholar
[5]
V. D. Sánchez A: Advanced support vector machines and kernel methods,Neurocomputing, Vol. 55, No. 1-2 (2003), pp.5-20.
DOI: 10.1016/s0925-2312(03)00373-4
Google Scholar
[6]
K. Kianmehr, R. Alhajj: CARSVM: A class association rule-based classification framework and its application to gene expression data, Artificial Intelligence in Medicine, Vol. 44, No. 1(2008), pp.7-25.
DOI: 10.1016/j.artmed.2008.05.002
Google Scholar
[7]
C. D. Sutton: Classification and Regression Trees, Bagging, and Boosting, Handbook of Statistics, Vol. 24 (2005), pp.303-329.
DOI: 10.1016/s0169-7161(04)24011-1
Google Scholar
[8]
H. Chen, S. Chen: Optimal confidence interval for the largest normal mean with unknown variance,Computational Statistics & Data Analysis, Vol. 47, No. 4(2004), pp.845-866.
DOI: 10.1016/j.csda.2004.01.009
Google Scholar