Regenerative Chatter Stability and Hopf Bifurcation Analysis in Milling System

Article Preview

Abstract:

The shifted Chebyshev polynomials and Floquet theory are both adopted for the prediction regenerative chatter stability and Hopf bifurcation in milling. The influences of the system parameter on the stability of the milling system have been analyzed. The stability lobe diagrams are obtained. The result shows that the shifted Chebyshev polynomials method is more accurate than the semi-discretion scheme for spindle speed lower than 3500 round per minutes. The stability in milling can well be predicted by the cutting depth and feed rate lobes diagrams. Only Hopf bifurcations are detected by the Eigen-value analysis. The stable solution transform from the stable equilibrium point to the quasi-periodic oscillation after Hopf bifurcation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-407

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Tobias, Machine Tool Vibration, Blackie and Sons Ltd, (1965).

Google Scholar

[2] Y. Altintas, E. Budak, Analytical Prediction of Stability Lobes in Milling, Annals of the CIRP 44(1) (1995) 357-362.

DOI: 10.1016/s0007-8506(07)62342-7

Google Scholar

[3] Y. Altintas, Analytical Prediction of Three Dimensional Chatter Stabolity in Milling, Japan Society of Mechanical Engineers International 44 (2001) 717-723.

Google Scholar

[4] Y. Altintas, G. Stepan, D. Merdol, Z. Dombovari, Chatter Stability of Milling in Frequency and Discrete Time Domain, CIRP Journal of Manufacturing Science and Technology 1 (2008) 35-44.

DOI: 10.1016/j.cirpj.2008.06.003

Google Scholar

[5] W. X. Tang, Q. H. Song, S. Q. Yu, S. S. Sun, B. B. Li, B. Du, X. Ai, Prediction of Chatter Stability in High-speed Finishing End Milling Considering Multi-mode Dynamics, Journal of Material Processing Technology, 209 (2009) 2585-2591.

DOI: 10.1016/j.jmatprotec.2008.06.003

Google Scholar

[6] G. Totis, RCPM-A New Method for Robust Chatter Prediction in Milling, International Journal of Machine tools & Manufacture 49 (2009) 273-284.

DOI: 10.1016/j.ijmachtools.2008.10.008

Google Scholar

[7] R. P. H. Faassen, N. Van de Wouw, J. A. J. Oosterling, H. Nijmaijer, Prediction of Regenerative Chatter by Modelling and Analysis of High-speed Milling, International Journal of Machine tools & Manufacture 43 (2003) 1437-1446.

DOI: 10.1016/s0890-6955(03)00171-8

Google Scholar

[8] G. Quintana , J. Ciurana, D. Teixidor, A New Experimential Methodology for Identification of Stability Lobes Diagram in Milling Operations, International Journal of Machine tools & Manufacture 48 (2008) 1637-1645.

DOI: 10.1016/j.ijmachtools.2008.07.006

Google Scholar

[9] J. Gradisek, M. Kalveram, T. Insperger, K. Weinert, G. Stépán, E. Govekar, I. Grabec, On Stability Prediction for Milling, International Journal of Machine tools & Manufacture 45 (2005) 769-781.

DOI: 10.1016/j.ijmachtools.2004.11.015

Google Scholar

[10] T. Insperger, G. Stépán, P. V. Bayly, B. P. Mann, Multiple Chatter Frequencies in Milling Processes, Journal of Sound and Vibration, 262 (2003) 333-345.

DOI: 10.1016/s0022-460x(02)01131-8

Google Scholar

[11] E. A. Butcher, H. T. Ma, E. Bueler, V. Averina, Z. Szabo, Stability of Linear Time-Periodic Delay-Fifferential Equations via Chebyshev Polynomials, International Journal for Numerical Methods in Engineering, 59 (2004) 895-922.

DOI: 10.1002/nme.894

Google Scholar

[12] S. C. Sinha, D. H. Wu, An Efficient Computational Scheme for the Analysis of Periodic Systems, Journal of Sound and Vibration, 151 (1991) 91-117.

DOI: 10.1016/0022-460x(91)90654-3

Google Scholar

[13] E. A. Butcher, S. C. Sinha, A Hybrid Formulation for the Analysis Time Preiodic Linear systems via Chebyshev Polynomials, Journal of Sound and Vibration 195(3) (1996) 518-527.

DOI: 10.1006/jsvi.1996.0441

Google Scholar

[14] S. C. Sinha, E. A. Butcher, Symbolic computation of fundmental solution Matrices for Linear Time-Periodic Dynamical Systems, Journal of Sound and Vibration, 26(1) (1997) 61-8.

DOI: 10.1006/jsvi.1997.1079

Google Scholar