Effect of the Pt Addition on the Ni-Alloy Powder during Spark Plasma Sintering

Article Preview

Abstract:

Spark plasma sintering was carried out to densify Ni-alloy doped with Pt powder at temperatures ranging between 1273 and 1323 K in order to obtain a variety of microstructures. Homogeneous distribution Pt and full densification were achieved in a short time, and the overall processing time not was exceeding 30 min via SPS process. Phase constitutions and microstructures and porosity evaluation were investigated by using scanning electron microscopy, chemical analysis and X-ray diffraction. It was found that two new phases ζ-PtAl2 and α-NiPt (Al). The set conditions are very promising from an energy-saving viewpoint; total powder consolidation was obtained per a decrease of 200 °C in the sintering temperature by using spark plasma sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-228

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Czech, F. Schmitz, W. Stam, Surface and Coatings Technology 68–69 (1994) 17.

Google Scholar

[2] H. Nickel, D. Clemens, W.J. Quadakkers, L. Singheiser, Journal of Pressure Vessel Technology 121 (1999) 384.

Google Scholar

[3] D. Monceau, A. Boudot-Miquet, K. Bouhanek, R. Peraldi, A. Malie, F. Crabos, B. Pieraggi, Journal de Physique IV France 10 (2000) 167.

DOI: 10.1051/jp4:2000423

Google Scholar

[4] T.A. Taylor, D.F. Bettridge, Coatings Surface and Coatings Technology 9 (1996) 86.

Google Scholar

[5] Cocking JL, Johnston GR, Richards PG. Platinum Met Rev 29 (1985) 17.

Google Scholar

[6] Patnaik PC, Thamburaj R, Sudarshan TS. In: Sudarshan TS, Bhat DG, editors. Surface modification technologies III. Warrendale, PA: TMS; (1990) p.759.

Google Scholar

[7] Streiff R, Boone DH. In: Sisson Jr RD, editor. Coatings and bimetallics for aggressive environments. Metals Park, OH: ASM International; (1985). p.159.

Google Scholar

[8] Schaeffer JC. MS Thesis, University of Pittsburgh; (1987).

Google Scholar

[9] Felton EJ. Oxid Met 10 (1976) 189.

Google Scholar

[10] Felton EJ, Pettit FS. Oxid Met 10 (1976) 189.

Google Scholar

[11] Fountain JG, Golightly FA, Stott FH, Wood GC. Oxid Met 10 (1976) 341.

Google Scholar

[12] Allam IM, Akuezue HC, Whittle DP. Oxid Met 14 (1980) 517.

Google Scholar

[13] G.S. HoppinIII,W.P. Danesi, Superalloys II, JohnWiley&Sons, (1987) 551.

Google Scholar

[14] T. Murakumo,T. Kobayashi,Y. Koizumi,H. Harada, Acta mater. 52 (2004) 3737.

Google Scholar

[15] E. Drost,H. G¨olitzer,M. Poniatowski,S. Zeuner, Metall 50 (1996) 492.

Google Scholar

[16] P.J. Hill L.A. Cornish,P. Ellis M.J. Witcomb, J. Alloys Compd. 322 (2001) 166–175.

Google Scholar

[17] P.J. Hill,N. Adams,T. Biggs,P. Ellis,J. Hohls S.S. Taylor I.M. Wolff, Mater. Sci. Eng. A329–331 (2002) 295.

Google Scholar

[18] S. Vorberg, M. Wenderoth,B. Fischer,U. Glatzel,R. V¨olkl, JOM 56 (2004) 40.

Google Scholar

[19] M. H¨uller, M. Wenderoth, S. Vorberg, B. Fischer, U. Glatzel, R. V¨olkl, Met. Mater. Trans. A 36A (2005) 681.

Google Scholar

[20] M. Wenderoth, L.A. Cornish, R. S¨uss,S. Vorberg, B. Fischer, U. Glatzel, R. V¨olkl, Met. Mater. Trans. A 36A (2005) 567.

Google Scholar

[21] S. Vorberg, M. Wenderoth, B. Fischer, U. Glatzel, R. V¨olkl, JOM 57 (2005) 49.

Google Scholar

[22] Jose M. Juarez G, David Jaramillo V. Ricardo Cuenca A. Fernando Juarez L, Powder Technology, 221, (2012) 264.

Google Scholar

[23] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, Journal of Materials Science 41 (2006) 763.

Google Scholar

[24] A. Courat, G. Molenat, J. Galy, Intermetallics 16 (2008) 1134.

Google Scholar

[25] D. Oquab, C. Estournes, D. Monceau, Advanced Engineering Materials 9 (2007) 413.

Google Scholar

[26] R.G. Menzies, G.J. Davies, J.W. Edington, Metal Science 16 (1982) 356.

Google Scholar

[27] M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, V. Sigh, Materials Science and Engineering A 245 (1998) 88.

Google Scholar

[28] M.C.M. Jeandin, J.L. Koutny, Y.C. Bienvenu, Institut National de la Propiété Industrielle, France, Accession (2610856), (1988).

Google Scholar

[29] T.L. Prakash, M.C. Somani, E.S. Bhagiradha Rao, Powder Metallurgy Related High Temperature Materials (1988) 179.

Google Scholar

[30] S. Hayashi, S.I. Ford, D.J. Young, D.J. Sordelet, M.F. Besser, B. Gleeson. Acta Materialia 53 (2005) 3319.

DOI: 10.1016/j.actamat.2005.03.046

Google Scholar

[31] R.D. Noebe, R.R. Bowman M.V. Nathal, International Materials Reviews 38 (1993) 193.

Google Scholar

[32] Meininger H, Ellner M. J Alloy Compd 353 (2003) 207.

Google Scholar

[33] Kamm JL, Milligan WW. Scripta Metall Mater 31 (1994) 1461.

Google Scholar

[34] Smialek JL, Hehemann RF. Metall Trans 4 (1973) 1571.

Google Scholar

[35] Lasˇek J, Chra´ska T, Krˇecˇek P, Bartusˇka P. Scripta Mater 37 (1997) 897.

Google Scholar

[36] Chara´ska T, Lasˇek J, Chra´ska P. Mater Sci Eng A244 (1998) 263.

Google Scholar

[37] Chen MW, Glynn ML, Ott RT, Hufnagel TC, Hemker KJ. Acta Mater 51 (2003) 4279.

Google Scholar

[38] Chen MW, Livi KJT, Wright PK, Hemker KJ. Metall Mater Trans A 34A (2003) 2289.

Google Scholar

[39] Boullay Ph, Schryvers D, Ball JM. Acta Mater 51 (2003) 1421.

Google Scholar

[40] Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY. Surf Coat Technol 163-164 (2003) 19.

Google Scholar

[41] D.J.; Besser, M.F.; Ott, R.T.; Zimmerman, B.J.; Porter, W.D.; Gleeson, B. Acta Materialia 55, 7 (2007) 2433.

Google Scholar