Study on Extraordinary Transport Behaviors of Polycrystalline La-Sb-Mn-O Ceramic

Article Preview

Abstract:

The transport properties of polycrystalline La0.9Sb0.1MnO3 (LSMO) bulk prepared by the solid-state reaction were investigated. We find that transport behaviors heavily depend on the synthesis process. The resistivity of LSMO1 for less rubbing time shows one metal-insulator transition (MIT) peak at temperature of 201 K, while the resistivity of LSMO2 for more rubbing time shows a MIT and a shoulder at about 240 and 140 K, respectively. The magnetoresistance (MR) ratio of LSMO2 reaches 41% under magnetic field of 2 T. Moreover, the MR ratio keeps significant value within broad temperature range. The infrared (IR) absorption spectra of LSMO2 show that the stretch-mode peak split into two Gaussian peaks with the gap about 70 cm-1. This large splitting indicates there are strong distortion and disorder in LSMO2 sample. The results are interpreted in terms of the disorder system and phase separation in perovskite manganites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-239

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. T. Tan, S. Y. Dai, P. Duan, H. B. Lu, Y. L. Zhou, Z. H. Chen : Phys. Rev. B Vol. 68 (2003), pp.014426-1.

Google Scholar

[2] C. Mitra, P. Raychaudhuri, G. Kobernik, K. Dorr, K. -H. Muller, L. Schultz, R. Pinto : Appl. Phys. Lett. Vol. 79 (2001) p.2408.

Google Scholar

[3] Ping Duan, Guotai Tan, Shouyu Dai, Yueliang Zhou, and Zhenghao Chen: J. Phys.: Condens. Matter Vol. 15 (2003) p.4469.

Google Scholar

[4] P. Duan, Z. Chen, S. Dai, Y. Zhou, H. Lu, K. Jin, B. Cheng: Appl. Phys. Lett. Vol. 84 (2004) p.4741.

Google Scholar

[5] Ying-Tang Zhang, Zi-Yu Chen, Chun-ChangWang, Qiu Jie, Hui-Bin Lu: J. Magn. Magn. Mater. Vol. 321 (2009) p.1199.

Google Scholar

[6] Lu H. B., Dai S.Y., Chen Z. H., Liu L. F., Guo H. Z., Xiang W. F., Fei Y. Y., He M., Zhou Y. L., Yang G. Z.: Chin. Phys. Lett. 20 (2003) p.137.

Google Scholar

[7] M. C. Walsh, M. Foldeaki, A. Giguere, D. Bahadur, S. K. Mandal, R. A. Dunlap: Physica B Vol. 253 (1998) p.103.

DOI: 10.1016/s0921-4526(98)00374-3

Google Scholar

[8] H. L. Ju, Hyunchul Sohn: Solid State Commun. Vol. 102, (1997) p.463.

Google Scholar

[9] Tetsuo Shimura, Toshimasa Hayashi, Yoshiyuki Inaguma, Mitsuru Itohz: J. Solid State Chem. Vol. 124 (1996) p.250.

Google Scholar

[10] Song Qixiang, Liu Ning, Yan Guoqing, Tong Wei, Sun Yong: J. Rare Earths Vol. 24 (2006) p.332.

Google Scholar

[11] Chang Seop Hong, Wan Seop Kim, Eun Ok Chi, Kyu Won Lee, Nam Hwi Hur: Chem. Mater. Vol. 12 (2000) p.3509.

Google Scholar

[12] H. Y. Hwang, S-W. Cheong, N. P. Ong, B. Batlogg: Phys. Rev. Lett. Vol. 77 (1996) p. (2041).

Google Scholar

[13] Ch. Hartinger, F. Mayr, A. Loidl, T. Kopp: Phys. Rev. B Vol. 70 (2004) pp.134415-1.

Google Scholar

[14] M. V. Abrashev, A. P. Litvinchuk, M. N. Iliev, R. L. Meng, V. N. Popov, V. G. Ivanov, R. A. Chakalov, C. Thomsen: Phys. Rev. B Vol. 59 (1999) p.4146.

Google Scholar

[15] LU Zun-Ming, SUN Ji-Rong, LI Yang-Xian: Chin. Phys. Lett. Vol. 23 (2006) p.456.

Google Scholar

[16] H. L. Liu, S. L. Cooper, S. W. Cheong: Phys. Rev. Lett. Vol. 81 (1998) p.4684.

Google Scholar

[17] T. Ishikawa, S. K. Park, T. Katsufuji, T. Arima, Y. Tokura: Phys. Rev. B Vol. 58 (1998) p. R13326.

Google Scholar