Type-2 Fuzzy C-Means Algorithm with Spatial Informations and Membership Constrains for Liver Segmentation

Article Preview

Abstract:

The Fuzzy C-Means algorithm with spatial informations and membership constrains is a very effective and efficient image segmentation method. However£¬it is founded with Type-1 fuzzy sets, which can not handle the uncertainties existing in liver image well.The type-2 fuzzy sets have better performance on handling uncertainties than Type-1 fuzzy set. In this paper, a new robust Type-2 FCM image segmentation algorithm is proposed aiming to improve the segmentation precision and robustness of liver image by introducing the type-2 fuzzy set into FCM with spatial information and membership constrains. We extend the type-1 fuzzy set of membership to interval type-2 fuzzy set using two fuzzifiers and which create a footprint of uncertainty (FOU). The experimental results show that the target area of the liver in CT images can be segmented well by the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

570-574

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mougiakakou, S.G. , Matsopoulos, G.K. , Nikita, K.S. , Nikita, A.S. and Kelekis, D. : IEEE Transactions on information technology in biomedicine Vol. 7(2003)No. 3, p.153.

DOI: 10.1109/titb.2003.813793

Google Scholar

[2] Amir H. Foruzan, Reza Aghaeizadeh Zoroofi, Masatoshi Hori and Yoshinobu Sato: International Journal of Computer Assisted Radiology and Surgery, Vol. 4(2009)No. 3, p.287.

DOI: 10.1007/s11548-009-0293-2

Google Scholar

[3] Toshiyuki Okada, Ryuji Shimada , Masatoshi Hori , Masahiko Nakamoto , Yen-Wei Chen , Hironobu Nakamura and Yoshinobu Sato: Academic Radiology, Vol. 15(2008)No. 11, p.1390.

Google Scholar

[4] Bing Nan Lia, b, Chee Kong Chuic, Stephen Changd, Sim Heng Onge: Expert Systems with Applications, Vol. 39(2012)No. 10, p.9661.

Google Scholar

[5] Heimann, T. et. al.: IEEE Transactions on Medical Imaging. Vol. 28(2009)No. 8 , p.1251.

Google Scholar

[6] Laurent Massoptier, Sergio Casciaro: European Radiology, vol. 18(2008)No. 8, p.1658.

Google Scholar

[7] Bing Nan Li,Chee Kong Cui, Stephen Chang and S.H. Ong.: Computers in Biologly and Medicine. Vol. 41(2011)No. 1, p.1.

Google Scholar

[8] S. Coupland and R. Jonh: IEEE Transactions Fuzzy Systems, Vol. 15(2007)No. 1, p.3.

Google Scholar

[9] J. Zeng, L. Xie and Z. Q. Liu: Pattern Recognition, Vol. 41(2008)No. 1, p.3636.

Google Scholar

[10] Lin Zhu, Fu-Lai Chung and Shitong Wang: IEEE Transactions on Systerms, Man and Cybernetics, Vol. 39(2009)No. 3, p.578.

DOI: 10.1109/tsmcb.2008.2004818

Google Scholar

[11] Frank Höppner and Frank Klawonn: International Journal of Approximate Reasoning , Vol. 32(2003)No. 1, p.85.

Google Scholar

[12] Songcan Chen and Daoqiang Zhang: IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Vol. 34(2007)No 4, p. (1907).

Google Scholar