Selective Breeding of Oxygen-Tolerant and Oxalate-Degrading Lactic Acid Bacteria by Protoplast Fusion

Article Preview

Abstract:

Bifidobacterium lactis with oxalate-degrading capacity can efficiently reduce the oxalate in vivo, and it can be used to prevent and treat kidney stone diseases. While Bifidobacterium lactis is poorly oxygen-tolerant, which hinders it from being as microbial ecological agents. To obtain oxygen-tolerant and oxalate-degrading lactic acid bacteria, protoplast fusion technology was used between B. lactis and L. acidophilus. Under the optimum conditions of protoplast fusion with PEG 6000 concentration 50%, the fusion time 7 min, the fusion temperature 30°C, the concentration of CaCl2 0. 02mol/ L and the concentration of MgCl2 0.5mol/ L, the fusion rate reached 7.6%, and three oxygen-tolerant fusant showing that the level of oxalate degradation were similar with B. lactis was obtained. The fusants of SZY1-7 and SZY2-1 could tolerance to pH 2.5 and 0.5% (w/v) bile salt.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1489-1494

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hodgkinson: Invest. Urol. Vol. 18 (1980), p.123.

Google Scholar

[2] R. P. Holmes,M. Kennedy: Kidney. Int. Vol. 57(2000), p.1662.

Google Scholar

[3] R.A. Rodby, T.S. Tyszka and J.W. Williams: Am. J. Med. Vol 90(1991), p.498.

Google Scholar

[4] C. Campieri, M. Campieri and V. Bertuzzi: Kidney. Int. Vol. 60(2001), p.1097.

Google Scholar

[5] R. Siener, N. Schade and C. Nicolay: J. Urol. Vol. 173(2005), p.1601.

Google Scholar

[6] S. Turroni, C. Bendazzoli and S.C. Dipalo: Appl. Environ. Microbiol. Vol. 76(2010), p.5609.

Google Scholar

[7] F. Federici, B. Vitali and R. Gotti: Appl. Environ. Microbiol. Vol. 70(2004), p.5066.

Google Scholar

[8] M.J. Allison, K. A. Dawson and W.R. Mayberry: Arch. Microbiol. Vol. 141(1985), p.1.

Google Scholar

[9] H. Sidhu, S.D. Ogden and H.Y. Lung: J. Bacteriol. Vol. 179(1997), p.3378.

Google Scholar

[10] H.Y. Lung, A.L. Baetz and A.B. Peck: J. Bacteriol. Vol. 176(1994), p.2468.

Google Scholar

[11] H. Sidhu, M.E. Schmidt and J.G. Cornelius: J. Am. Soc. Nephrol. Vol. 10(1999), p.334.

Google Scholar

[12] S. Turroni, B. Vitali and C. Bendazzoli: J. Appl. Microbiol. Vol. 103(2007), p.1600.

Google Scholar

[13] M. Ventura, S. O 'Flaherty and M.J. Claesson: Nat. Rev. Microbiol. Vol. 7(2009), p.61.

Google Scholar

[14] C. Kwak, B.C. Jeong and J.H. Ku: Urol. Res. Vol. 34(2006), p.265.

Google Scholar

[15] T.R. Lewanika, S.J. Reid and V.R. Abratt: FEMS. Microbiol. Ecol. Vol. 61(2007), p.110.

Google Scholar

[16] D.V. Gokhale, U.S. Puntambekar and D.N. Deobagkar: Biotechnol. Adv. Vol. 11(1993), p.199.

Google Scholar

[17] S. Agbessi, J. Beausejour and C. Dery: Appl. Microbiol. Biotechnol. Vol. 62(2003), p.233.

Google Scholar

[18] Y. Bae, Jo.Y. Yeeh, and O. Chang: Biotech. Lett. Vol: 18(1996), p.805.

Google Scholar

[19] M. Iwata, M. Mada and H. Ishiwa: Appl. Environ. Microbiol. Vol . 52(1986), p.392.

Google Scholar

[20] L.J. Lee-Wickner, B.M. Chassy: Appl. Environ. Microbiol. Vol. 48(1984), p.994.

Google Scholar

[21] S. Oh, S.H. Kim and R.W. Worobo: J. Dairy. Sci. Vol. 83(2000), p.2747.

Google Scholar

[22] J. Sjovall: Proc. Soc. Exp. Biol. Med. Vol. 100(1959), p.676.

Google Scholar

[23] M.A.K. Torshizi, S. Rahimi and N. Mojgani: Asian. Austral. J. Anim. Vol. 21(2008), p.1495.

Google Scholar