Novel Microwave Carbonization System for Coconut Shells

Article Preview

Abstract:

This paper presented a novel heating technique of biomass carbonization system using microwave radiation. The heating system employs multi-feed microwave generators for uniform heating distribution without stirrer mechanism in a 0.847 m3 cylindrical low cement castable reactor. The experiment entailed the carbonization of 3,500 kg of coconut shell at 450°C for 10 hr. Afterward, the charcoal and wood vinegar yields were analyzed; meanwhile, uncondensed gases were treated to fuel the engine-generator system. The results show that the proposed approach greatly saves the production time of charcoal yields and allows ease of control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

1539-1544

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Goran Berndes, Monique Hoogwijk, Richard van den Broek, The contribution of biomass in the future global energy supply-A review of 17 studies, Biomass and Bioenergy, 25 (2003): 1-28.

DOI: 10.1016/s0961-9534(02)00185-x

Google Scholar

[2] S. Prasertsan ,B. Sajjakulnukit, Biomass and biogas energy in Thailand: Potential, opportunity and barriers, Renewable Energy 31 (2006): 599–610.

DOI: 10.1016/j.renene.2005.08.005

Google Scholar

[3] Shin-ya Yokoyama, Tomoko Ogi, Anan Nalampoon, Biomass energy potential in Thailand, Biomass and Bioenergy, 18(2000): 405-410.

DOI: 10.1016/s0961-9534(00)00004-0

Google Scholar

[4] A.V. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal 91 (2003): 87–102.

DOI: 10.1016/s1385-8947(02)00142-0

Google Scholar

[5] M. J Blesa, J. L Miranda, R Moliner, M. T Izquierdo, J. M Palacios, Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes, Journal of Analytical and Applied Pyrolysis, 70,  2003: 665-677.

DOI: 10.1016/s0165-2370(03)00047-0

Google Scholar

[6] O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production- A review, Renewable and Sustainable Energy Reviews, 11 (2007): 1966–(2005).

DOI: 10.1016/j.rser.2006.03.013

Google Scholar

[7] S. Nami Kartal, Evren Terzi, Coskun Kose, John Hofmeyr, Yuji Imamura, Efficacy of tar oil recovered during slow pyrolysis of macadamia nut shells, International Biodeterioration & Biodegradation, 65 (2011): 369-373.

DOI: 10.1016/j.ibiod.2010.08.011

Google Scholar

[8] Richard L. Bain, Ralph P. Overend, Kevin R. Craig, Biomass-fired power generation, Fuel Processing Technology, 54 (1998): 1-16.

DOI: 10.1016/s0378-3820(97)00058-1

Google Scholar

[9] C. Ludwig, S. Hellweg, and S. Stucki, Municipal Solid Waste Management, Springer, Germany, (2003).

Google Scholar

[10] M.R. Pelaez-Samaniego, M. Garcia Perez, L.B. Cortez, F. Rosillo Calle, J. Mesa Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy, Renewable and Sustainable Energy Reviews, 12 (2008): 1063-1086.

DOI: 10.1016/j.rser.2006.10.018

Google Scholar

[11] Moses Hensley Duku, Sai Gu, Essel Ben Hagan, Biochar production potential in Ghana-A review, Renewable and Sustainable Energy Reviews, 15 (2011): 3539-3551.

DOI: 10.1016/j.rser.2011.05.010

Google Scholar

[12] A.C. Metaxas, R.J. Meredith,  Industrial Microwave Heating, IEE Power Engineering Series, London, (1993).

Google Scholar

[13] T. V. C. T. Chan and H. C. Reader, Understanding Microwave Heating Cavities, Artech House Publishers, (2000).

Google Scholar

[14] M. Gupta, E. Wong, and W. Leong, Microwaves and Metals, John Wiley & Sons, (2010).

Google Scholar

[15] M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation, A Design Guide, Elsevier, (2010).

DOI: 10.1016/b978-0-8155-1592-0.00009-0

Google Scholar