Enhancement of Faceted Growth of Primary Al3Ni Phase in High Magnetic Field

Article Preview

Abstract:

Faceted growth of primary Al3Ni phase in the hypereutectic Al-Ni alloy in a high magnetic field was investigated. It was found that faceted growth of primary Al3Ni phase was enhanced in the presence of the magnetic field. However, the fibrous to granular transition of Al-Al3Ni eutectics occurred. The undercooling of primary and eutectic phases during solidification was measured using differential thermal analysis. It was showed that the undercooling of primary phase was hardly changed but that of eutectics markedly increased in the magnetic field. According to Cahn theory of crystal growth, the critical driving force was used to satisfactorily explain the morphology transition in the magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

642-646

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. H. Donnay and D. Harker. Am. Mineral., Vol. 22(1937), p.446.

Google Scholar

[2] P. Hartman and W. G. Perdok. Acta Crystallogr., Vol. 8(1955), p.49.

Google Scholar

[3] K.A. Jackson: Liquid metals solidification (ASM Cleveland, 1958).

Google Scholar

[4] X. Liu and P. Bennema. Phys. Rev. B, Vol. 53(1996), p.2314.

Google Scholar

[5] J. Wang, Q. Chen, C. Zeng and B. Hou. Adv. Mater., Vol. 16(2004), p.137.

Google Scholar

[6] P. Beecher, E. V. Shevchenko, H. Weller, A. J. Quinn and G. Redmond. Adv. Mater., Vol. 17 (2005), p.1080.

Google Scholar

[7] A. E. Mikelson and Y. K. Karklin. J. Cryst. Growth, Vol. 52(1981), p.524.

Google Scholar

[8] P. d. Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi and M. Pernet. Nature, Vol. 349(1991), p.770.

DOI: 10.1038/349770a0

Google Scholar

[9] H. Mizuseki, K. Tanaka, K. Ohno and Y. Kawazoe. Sci. Rep. RITU, Vol. 43(1997), p.55.

Google Scholar

[10] D. Tassoni, J. P. Riquet and F. Durand. J. Cryst. Growth, Vol. 44(1978), p.241.

Google Scholar

[11] C. Li, Z. Ren, W. Ren, K. Deng, G. Cao, Y. Zhong and Y. Wu. Rev. Sci. Instrum., Vol. 80(2009), p.073907.

Google Scholar

[12] J. W. Cahn. Acta Metall., Vol. 8(1960), p.554.

Google Scholar

[13] N. Marasli and J. D. Hunt. Acta Mater., Vol. 44(1996), p.1085.

Google Scholar

[14] R. Saniz, L. -H. Ye, T. Shishidou and A. J. Freeman. Phys. Rev. B, Vol. 74(2006), p.014209.

Google Scholar

[15] A. Juarez-Hernandez and H. Jones. Scripta Mater., Vol. 38(1998), p.729.

Google Scholar

[16] E.A. Brandes, G.B. Brook: Smithells metals reference book (Butterw orth-Heinemann, Oxford, 1992).

Google Scholar

[17] J. W. Cahn, W. B. Hillig and G. W. Sears. Acta Metall., Vol. 12(1964), p.1421.

Google Scholar

[18] F. Yilmaz and R. Elliott. J. Cryst. Growth, Vol. 66(1984), p.465.

Google Scholar

[19] R. Hamar and C. Lemaignan. J. Cryst. Growth, Vol. 53(1981), p.586.

Google Scholar

[20] P. Hartman and P. Bennema. J. Cryst. Growth, Vol. 49(1980), p.145.

Google Scholar

[21] C. Li, H. Yang, Z. Ren, W. Ren and Y. Wu. Prog. Electromagn. Res. Lett., Vol. 15(2010), p.45.

Google Scholar