Space Charge Limited Current and Magnetoresistance in Si

Article Preview

Abstract:

Mott and Gurney point out1, for defect-free semiconductors, I-V curve deviates from linear Ohmic type to nonlinear space-charge limited behavior at high electric field. A surprising large magnetoresistance (MR) has been reported in space-charge limited region by Delmo2-4 recently. In present work, I-V and MR curves of silicon samples with different doping concentration are measured. It is observed that I-V curve enters into space charge region at lower voltage in heavily doped samples, however, space-charge limited current is absent in lightly doped samples. Two samples show different types of MR curve. In heavily doped samples, 8% MR is acquired at 3kG and the value of MR increases linearly up to 17%, while MR increases slowly up to 11% in lightly doped samples. It is believed that the dopant and trap in N-type silicon has a strong influence on the space-charge limited current and MR.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

952-955

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. F. Mott and R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940).

Google Scholar

[2] Michael P. Delmo, Shinpei Yamamoto, Shinya Kasai1, Teruo Ono and Kensuke Kobayashi. Nature 457, 1112-U65 (2009).

Google Scholar

[3] M. P. Delmo, S. Kasai, K. Kobayashi, and T. Ono. Appl. Phys. Lett. 95, 132106-132108 (2009).

Google Scholar

[4] M. P. Delmo, S. Kasai, K. Kobayashi, and T. Ono. J. Phys.: Conf. Ser. 193, 012001-012004 (2009).

Google Scholar

[5] J. J. H. M. Schoonus, F. L. Bloom, W. Wagemans, H. J. M. Swagten, and B. Koopmans. Phys. Rev. L. 100, 127202-127205 (2008).

Google Scholar

[6] J. J. H. M. Schoonus, P. P. J. Haazen, H. J. M. Swagten, and B. Koopmans. J. Phys. D: Appl. Phys. 42, 185011-185014 (2009).

DOI: 10.1088/0022-3727/42/18/185011

Google Scholar

[7] J. J. H. M. Schoonus, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans. J. Appl. Phys. 103, 07F309-07F311 (2008).

Google Scholar

[8] Rose, A. Phys. Rev. 97, 1538–1544 (1955).

Google Scholar

[9] Lampert, M. A. Phys. Rev. 103, 1648–1656 (1956).

Google Scholar

[10] Lindmaye.J. J. Appl. Phys. 36, 196-201 (1965).

Google Scholar

[11] Lindmaye.J. et al. J. Appl. Phys. 34, 809-812 (1963).

Google Scholar

[12] N. A. Porter and C. H. Marrows. J. Appl. Phys. 109, 07C703-07C705 (2011).

Google Scholar

[13] Nicholas A. Porter and Christopher H. Marrows. J. Appl. Phys. 111, 043719-043724 (2012).

Google Scholar

[14] Nicholas A. Porter Christopher H. Marrows. Scientific Reports. 2, 565-569 (2012).

Google Scholar

[15] Y. Zhang, B. de Boer, and P.W. M. Blom. Phys. Rev. B. 81, 085201-085205 (2010).

Google Scholar

[16] Y. Zhang and P.W. M. Blom. Org. Electron. 11, 1261-1267 (2010).

Google Scholar

[17] X. -G. Zhang and Sokrates T. Pantelides. Phys. Rev. L. 108, 266602-266606 (2012).

Google Scholar