Polycrystalline Silicon Films on SiO2 Substrate Treated by Excimer Laser Annealing

Article Preview

Abstract:

Selected area laser-annealed polycrystalline silicon (p-Si) thin films were prepared by a 248 nm excimer laser. 1 μm thick p-Si films with grain size less than 100 nm were deposited on SiO2 substrate by chemical vapor deposition using atmospheric pressure (APCVD). Grain sizes before and after annealing was examined by scanning electron microscopy (SEM) and the mechanism of grain growth was discussed in detail. The maximum grain size of a selected area laser-annealed p-Si film can be increased from 100 nm up to 2.9 μm on SiO2 substrate by using appropriate laser energy densities. It indicated that silicon grains in laser-annealed regions had grown up competitively with three stages.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

946-951

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang J H, Lien S Y, Chen C F, et al. IEEE Electron Device Lett, 2010, 31(1): 38.

Google Scholar

[2] Gall S, Becker C, Conrad E, et al. 2009, 93(6/7): 1004.

Google Scholar

[3] Focsa A, Gordon I, Auger J M, et al. Renewable Energy, 2008, 33(2): 267.

Google Scholar

[4] Gordon I, Carnel L, Gestel D V, et al. Progress in Photovoltaics, 2007, 15(7): 575.

Google Scholar

[5] Slaoui A, Pihan E, Focsa A., 2006, 90(10): 1542.

Google Scholar

[6] Wang W J, Xu Y, Shen H. Phys Status Solidi A, 2006, 203(4): 721.

Google Scholar

[7] Zhao Y W, Geng X H, Wang W J, et al. Phys Status Solidi A, 2006, 203(4): 714.

Google Scholar

[8] Ai B, Shen H, Liang Z C, et al. J Cryst Growth, 2005, 276(1/2): 83.

Google Scholar

[9] Yamamoto K, Nakajima A, Yoshimi M, et al. Progress in Photovoltaics, 2005, 13(6): 489.

Google Scholar

[10] Beaucarne G, Bourdais S, Slaoui A, et al. Appl Phys A: Materials Science & Processing, 2004, 79(3): 469.

Google Scholar

[11] Reber S, Hurrle A, Eyer A, et al. Solar Energy, 2004, 77(6): 865.

Google Scholar

[12] T. Kautzsch, A. Braun, and H. G. Wagemann: Mater. Sci. Eng. B 73 (2000) 208.

Google Scholar

[13] A. Ogane, S. Honda, and Y. Uraoka: J. Cryst. Growth 311 (2009) 789.

Google Scholar

[14] S. Reber, A. Eyer, and F. Haas: J. Cryst. Growth 287 (2006) 391.

Google Scholar

[15] S. Gall, J. Schneider, and J. Klein: Thin Solid Films 511–512 (2006) 7.

Google Scholar

[16] L. Cai, H. Y. Wang, and W. Brown: Electrochem. Solid-State Lett. 8 (2005) G179.

Google Scholar

[17] T. Yamazaki, Y. Uraoka, and T. Fuyuki: Thin Solid Films 487 (2005) 26.

Google Scholar

[18] K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers: Sol. Energy Mater. Sol. Cells 68 (2001) 173.

Google Scholar

[19] S. Reber: Ph. D. dissertation, University of Mainz, Mainz (2000).

Google Scholar

[20] B. von Ehrenwall, A. Braun, and H. G. Wagemann: J. Electrochem. Soc. 147 (2000) 340.

Google Scholar

[21] A. Slaoui and S. Bourdais: J. Phys. IV 11 (2001) Pr3-301.

Google Scholar