Full-Potential Study of the Magneto-Optical Kerr Effect for AuMnSb and AuMnSn

Article Preview

Abstract:

The magneto-optical Kerr effect (MOKE) for both Heusler type alloys (AuMnSb and AuMnSn) were studied using the full-potential linearized augmented plane-wave (FP-LAPW) method, based on the density functional theory implemented in the WIEN2k code. The differences with previous calculations on the Kerr spectra have been found explicitly. At proper Lorentzian such as δ = 0.4 eV, the calculated Kerr angle of AuMnSn reaches its maxima +0.3° near 0.6 eV and-0.5° at 5.2 eV, respectively while the MOKE spectra of AuMnSb exhibit less prominent Peaks (+0.5° at 0.3 eV, -1.9° at 0.9 eV, -1.0° at 2.4 eV and-2.0° at 5.3 eV). The results on the spectra in this work showed quite a lot differences with all previous all-electron calculations. It is concluded that the contribution from Sb (or Sn) site to the magneto-optical kerr effect is quite crucial in Heuslar alloys.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 750-752)

Pages:

941-945

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Voigt, Magneto and Electro-optic, Teubner, Leipzig, (1908).

Google Scholar

[2] K. H. K. Buschow, in : E. P. Wohlfarth, Buschow KHJ. (Eds. ), Ferromagnetic Materials, Vol. 4, Elsevier B. V., 1988 (Chapter 5).

Google Scholar

[3] C. G. Stefanita, Basis of Magneto-Optical Applications and Materials, Magnetism, Springer, 2012 (Chapter 4).

Google Scholar

[4] L. Offernes, P. Ravindran, and A. Kjekshus, Appl. Phys. Lett. 2003, 82(17): 2862.

Google Scholar

[5] P. Ravindran, L. Offernes, and A. Kjekshus, Appl. Phys. Lett. 2007, 91(21): 216101.

DOI: 10.1063/1.2804560

Google Scholar

[6] S. J. Lee, Y. Janssen, J. M. Park, et. al., Appl. Phys. Lett. 2006, 88(12): 121909.

Google Scholar

[7] M. Amft and P. M. Oppeneer, J. Phys.: Condens. Matter 2007, 19(31): 315216.

Google Scholar

[8] A. R. Williams, J. Kübler and A. Kjekshus, Phys. Rev. B 1979, 19(12): 6094-6118.

Google Scholar

[9] Information on http: /www. wien2k. at.

Google Scholar

[10] E. Wimmer, H. Krakauer, M. Weinert, et. al., Phys. Rev. B 1981, 24(2): 864-875.

Google Scholar

[11] M. Weinert, E. Wimmer, A. J. Freeman, Phys. Rev. B 1982, 26(8): 4571-4578.

Google Scholar

[12] D. J. Singh and L. Nordström, Planewaves, pseudopotentials and LAPW method, 2nd edition (Springer, 2006, USA).

Google Scholar

[13] P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vols. 1-3 (American Society of Metals, Metals Park, 1985, OH).

Google Scholar

[14] H. Nowotny and F. Holub, Monatsh. Chem. 1960, 91: 877-887.

Google Scholar

[15] H. U. Schuster, H. W. Hinterkeuser, W. Schafer, et. al., Z. Naturforsch. B 31, 1976: 1540-1541.

Google Scholar

[16] C. Walle, L. Offernes, and A. Kjekshus, J. Alloy. & Comp. 2003, 349(1-2): 105-110.

Google Scholar

[17] A. Neumann, L. Offernes, and A. Kjekshus, J. Alloy. & Comp. 1998, 274(1-2): 136-141.

Google Scholar

[18] P. M. Oppeneer, T. Maurer, J. Sticht, et. al., Phys. Rev. B 1992, 45(19): 10924-10933.

Google Scholar

[19] G. Q. Di, S. Iwata, S. Tsunashima, et. al., J. Mag. Mag. Mater. 1992, 104-107(2): 1023-1024.

Google Scholar

[20] O. S. Heavens, in: Hass G, Thun R E (Eds. ) Physics of Thin Films, Vol. 2, Academic Press, New York, 1964, p.193.

Google Scholar

[21] M. A. Angadi and V. Thanigaimani, J. Mater. Sci. Lett. 1990, 9: 1087-1090.

Google Scholar

[22] I. Miotkowski and S. Miotkowska, Thin Solid Film 1988, 165: 91-97.

Google Scholar