An Adaptive Fir Filtering Based on Balanced Realization

Article Preview

Abstract:

Balanced realization is an attractive candidate to design state-space adaptive filter structure due to its least parameter sensitivity. In this paper, based on the balanced realization, an adaptive finite impulse response (FIR) filtering algorithm is proposed to minimize the output-error using the coefficients of the transfer function as the adaptive filter parameters. This algorithm is an internally balanced realization form and guarantees that the designed adaptive FIR filtering always minimizes the ratio of maximum-to-minimum eigenvalues of the Grammian matrices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 753-755)

Pages:

2566-2572

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. E. DeBrunner, Parameter Sensitivity, Estimation and Convergence – An Information Approach, [Ph. D. Dissertation], Virginia Tech. (1990).

Google Scholar

[2] S. G. Sankaran, A. A. (Louis) Beex, Balanced-Realization Based Adaptive IIR Filtering, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp.1837-1840.

DOI: 10.1109/icassp.1999.758279

Google Scholar

[3] P. A. Regalia, Adaptive IIR Filtering in Signal Processing and Control, New York: Marcel Dekker. (1995).

Google Scholar

[4] B. C. Moore, Principal Component Analysis in Linear Systems, IEEE Transactions on Automatic Control, Vol. 26, No. 1 (1981) pp.17-32.

Google Scholar

[5] V. R. Dehkordi, A. G. Aghdam, A Computationally Efficient Algorithm for Order-Reduction of IIR Filters Using Control Techniques, In: Processing of IEEE Conference on Control Applications, Toronto, Canada (2005) pp.898-903.

DOI: 10.1109/cca.2005.1507243

Google Scholar

[6] V. R. Dehkordi, A. G. Aghdam, B. Boulet, A Model Reduction Technique for IIR Filters Using Balanced Realization, In: Processing of American Control Conference, New York, USA (2007) pp.2899-2904.

DOI: 10.1109/acc.2007.4283002

Google Scholar

[7] K. Fujimoto, D. Tsubakino, On Computation of Nonlinear Balanced Realization and Model Reduction, In: Processing of American Control Conference, Minnesota, USA, 2006, pp.460-465.

DOI: 10.1109/acc.2006.1655399

Google Scholar

[8] H. Sandberg, A. Rantzer, Balanced Truncation of Linear Time-Varying Systems, IEEE Transactions on Automatic Control, Vol. 49, No. 2 (2004), pp.217-229.

DOI: 10.1109/tac.2003.822862

Google Scholar

[9] Bartlomiej Beliczynski, Izzet Kale, Gerald D. Cain, Approximation of FIR by IIR Digital Filters: An Algorithm Based on Balanced Model Reduction, IEEE Transactions on Signal Processing, Vol. 40, No. 3 (1992) pp.532-542.

DOI: 10.1109/78.120796

Google Scholar

[10] J. Harrison, A Frequency-Domain Approach to Frequency-Weighted Balanced Realization, IEEE Transactions on Circuits and Systems, Vol. 50, No. 5 (2003) pp.655-662.

DOI: 10.1109/tcsi.2003.811021

Google Scholar

[11] Y. Halevi, Approximated Gramians and Balanced Realization of Lightly Damped Flexible Structures, IEEE Transactions on Automatic Control, Vol. 47, No. 1 (2002), pp.193-198.

DOI: 10.1109/9.981744

Google Scholar

[12] P. M. S Burt, P. A. Regalia, A New Framework for Convergence Analysis and Algorithm Development of Adaptive IIR Filters, IEEE Transactions on Signal Processing, Vol. 53, No. 8 (2005) pp.3129-3140.

DOI: 10.1109/tsp.2005.851189

Google Scholar

[13] P. M. S. Burt, Inverse Identification Adaptive IIR Filtering: Convergence Speed Analysis and Successive Approximations Algorithm, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Hawaiian, USA (2007).

DOI: 10.1109/icassp.2007.367085

Google Scholar

[14] S. Yamaki, M. Abe, M. Kawamata, Explicit Expressions of Balanced Realizations of Second-Order Digital Filters with Real Poles, IEEE Signal Processing Letters, Vol. 15 (2008) pp.465-468.

DOI: 10.1109/lsp.2008.921479

Google Scholar

[15] N. P. Van Der, H. G. T. Morsche, R. R. M. Mattheij, Computation of Eigenvalue and Eigenvector Derivatives for a General Complex-Valued Eigensystem, Electronic Journal of Linear Algebra, Vol. 16 (2007) pp.300-314.

DOI: 10.13001/1081-3810.1203

Google Scholar