[1]
V. E. DeBrunner, Parameter Sensitivity, Estimation and Convergence – An Information Approach, [Ph. D. Dissertation], Virginia Tech. (1990).
Google Scholar
[2]
S. G. Sankaran, A. A. (Louis) Beex, Balanced-Realization Based Adaptive IIR Filtering, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, pp.1837-1840.
DOI: 10.1109/icassp.1999.758279
Google Scholar
[3]
P. A. Regalia, Adaptive IIR Filtering in Signal Processing and Control, New York: Marcel Dekker. (1995).
Google Scholar
[4]
B. C. Moore, Principal Component Analysis in Linear Systems, IEEE Transactions on Automatic Control, Vol. 26, No. 1 (1981) pp.17-32.
Google Scholar
[5]
V. R. Dehkordi, A. G. Aghdam, A Computationally Efficient Algorithm for Order-Reduction of IIR Filters Using Control Techniques, In: Processing of IEEE Conference on Control Applications, Toronto, Canada (2005) pp.898-903.
DOI: 10.1109/cca.2005.1507243
Google Scholar
[6]
V. R. Dehkordi, A. G. Aghdam, B. Boulet, A Model Reduction Technique for IIR Filters Using Balanced Realization, In: Processing of American Control Conference, New York, USA (2007) pp.2899-2904.
DOI: 10.1109/acc.2007.4283002
Google Scholar
[7]
K. Fujimoto, D. Tsubakino, On Computation of Nonlinear Balanced Realization and Model Reduction, In: Processing of American Control Conference, Minnesota, USA, 2006, pp.460-465.
DOI: 10.1109/acc.2006.1655399
Google Scholar
[8]
H. Sandberg, A. Rantzer, Balanced Truncation of Linear Time-Varying Systems, IEEE Transactions on Automatic Control, Vol. 49, No. 2 (2004), pp.217-229.
DOI: 10.1109/tac.2003.822862
Google Scholar
[9]
Bartlomiej Beliczynski, Izzet Kale, Gerald D. Cain, Approximation of FIR by IIR Digital Filters: An Algorithm Based on Balanced Model Reduction, IEEE Transactions on Signal Processing, Vol. 40, No. 3 (1992) pp.532-542.
DOI: 10.1109/78.120796
Google Scholar
[10]
J. Harrison, A Frequency-Domain Approach to Frequency-Weighted Balanced Realization, IEEE Transactions on Circuits and Systems, Vol. 50, No. 5 (2003) pp.655-662.
DOI: 10.1109/tcsi.2003.811021
Google Scholar
[11]
Y. Halevi, Approximated Gramians and Balanced Realization of Lightly Damped Flexible Structures, IEEE Transactions on Automatic Control, Vol. 47, No. 1 (2002), pp.193-198.
DOI: 10.1109/9.981744
Google Scholar
[12]
P. M. S Burt, P. A. Regalia, A New Framework for Convergence Analysis and Algorithm Development of Adaptive IIR Filters, IEEE Transactions on Signal Processing, Vol. 53, No. 8 (2005) pp.3129-3140.
DOI: 10.1109/tsp.2005.851189
Google Scholar
[13]
P. M. S. Burt, Inverse Identification Adaptive IIR Filtering: Convergence Speed Analysis and Successive Approximations Algorithm, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Hawaiian, USA (2007).
DOI: 10.1109/icassp.2007.367085
Google Scholar
[14]
S. Yamaki, M. Abe, M. Kawamata, Explicit Expressions of Balanced Realizations of Second-Order Digital Filters with Real Poles, IEEE Signal Processing Letters, Vol. 15 (2008) pp.465-468.
DOI: 10.1109/lsp.2008.921479
Google Scholar
[15]
N. P. Van Der, H. G. T. Morsche, R. R. M. Mattheij, Computation of Eigenvalue and Eigenvector Derivatives for a General Complex-Valued Eigensystem, Electronic Journal of Linear Algebra, Vol. 16 (2007) pp.300-314.
DOI: 10.13001/1081-3810.1203
Google Scholar