Microwave Assisted Reflux Synthesis and Characterization of Magnetic Fe3O4 Micro Bubbles Embed in Nano Particles

Article Preview

Abstract:

Magnetic Fe3O4 nanobubbles surrounded by nanoparticles are prepared by adopting microwave assisted reflux method. The nanomagnetic particles surrounded by small beads like particles are fabricated by irradiating the prepaperd sample solutions by microwave radiations coupled with reflux method simultaneously at 90°C for 45 mins. The characterization of the prepared Fe3O4 particles are carried out by using x ray diffraction, scanning electron microscopy and transmission electron microscopy. The instrumentations shows the morphology that is thick walled bubble like with approximate diameter of about 300 nm to 400 nm surrounded by small nanoparticles of 5 nm to 30 nm in range. The particles are bubbles like and some broken bubbles showed that these might be hollow from inside.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-16

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson. J. Phys. D: Appl. Phys, 36(2003), p.167.

Google Scholar

[2] C. B. Catherine and S. G. C. Curtis:J. Phys. D: Appl. Phys, 36 (2003), p.198.

Google Scholar

[3] Chikazumi, S. Taketomi, M. Ukitaet al: Magn. Magn. Mater, 65 (1987), p.245.

Google Scholar

[4] A-H. Lu, W. Schmidt, N. Matoussevitch, H. BPnnermannet al: Chem, 116(2004), p.4403.

Google Scholar

[5] C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett: Chem. 116(2004), p.5763.

Google Scholar

[6] A.K. Gupta and M. Gupta, Biomaterials, 26(2005), p.3995.

Google Scholar

[7] Mornet, S. Vasseur, F. Grassetet al: Prog. Solid. State. Chem, 34(2006), p.237.

Google Scholar

[8] Z. Li, L. Wei, M. Y. Gao, H. Lei: Adv. Mater, 17 (2005), p.1001.

Google Scholar

[9] D. W. Elliott, W. -X. Zhang: Environ. Sci. Technol, 35(2001), p.4922.

Google Scholar

[10] M. Takafuji, S. Ide, H. Ihara, Z. Xu: Chem. Mater, 16(2004), p. (1977).

Google Scholar

[11] A.H. Lu, E. L. Salabas, and F. S. Angew: Chem. Int. Ed, 46 (2007), p.1222.

Google Scholar

[12] Xu and S. Sun: Polym. Int, 56(2007), p.821.

Google Scholar

[13] S. S. Lee, J. Park, Y. Chung and H. B. Na:J. Am. Chem. Soc, 123 (2001), p.12798.

Google Scholar

[14] B.H. Sohn and R.E. Cohen: Chem. Mater, 9(1997), p.264.

Google Scholar

[15] D.K. Kim, Y. Zhang, W. Voit, K.V. Rao: J. Magn. Magn. Mater, 225(2001), p.30.

Google Scholar

[16] J. Gao, H. W. Gu and B. Xu, Acc. Chem. Res, 42 (2009), p.1097.

Google Scholar

[17] L. Wang, H. Y. Park, S. I. -I. Lim et al:J. Mater. Chem, 18 (2008), p.2629.

Google Scholar

[18] Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett, 2(2002), p.183.

Google Scholar