Enhancement of Chloramphenicol Sonochemical Degradation by Sodium Peroxydisulfate

Article Preview

Abstract:

Sonochemical degradation of the antibiotics chloramphenicol in aqueous solution with sodium peroxydisulfate sulphate (SPDS) enhancement was investigated. The preliminary studies of optimal degradation methodology were conducted with sole SPDS, cobalt activated SPDS (SPDS/Co2+), ultrasonication with SPDS (SPDS/US) and ultrasonication with cobalt activated SPDS (SPDS/Co2+/US). The effect of the initial pH values of the aqueous solution on the sonochemical degradation rate of chloramphenicol was also investigated. The results showed that the sonolysis of chloramphenicol can be accelerated remarkably by adding SPDS and the efficient treatment method for treating the chloramphenicol wastewater was ultrasound coupled cobalt activated SPDS. The ultrasonic degradation rate constants in acidic water are higher than those obtained in neutral or basic aqueous solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-36

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber and H.T. Buxton: Environmental Science and Technology Vol. 36 (2002), p.1202.

DOI: 10.1021/es011055j

Google Scholar

[2] B. Kasprzyk-Hordern, R.M. Dinsdale and A.J. Guwy: Water Res. Vol. 42 (2008), p.3498.

Google Scholar

[3] Nakada N, Kiri K, Shinohara H, Harada A, Kuroda K, Takizawa S, Takada H.: Environmental Science and Technology Vol. 42 (2008), p.6347.

DOI: 10.1021/es7030856

Google Scholar

[4] C.P. Yu and K.H. Chu: Chemosphere Vol. 75 (2009), p.1281.

Google Scholar

[5] Q. Sui, J. Huang, S.B. Deng, G. Yu and Q. Fan: Water Res. Vol. 44 (2010), p.417.

Google Scholar

[6] A. Gulkowska, Y.H. He, M.K. So, L.W.Y. Yeung, H. W Leung, J. P Geisy, P.K.S. Lam, M. Martin and B.J. Richardson: Marine Pollution Bulletin Vol. 54 (2007), p.1287.

DOI: 10.1016/j.marpolbul.2007.04.008

Google Scholar

[7] A. Chatzitakis, C. Berberdou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis and I. Poulios: Water Res. Vol. 42 (2008), p.386.

DOI: 10.1016/j.watres.2007.07.030

Google Scholar

[8] X.K. Wang, G.H. Chen and W.L. Guo: Molecules Vol. 8 (2003), p.40.

Google Scholar

[9] X.K. Wang, Z.Y. Yao, J.G. Wang, W.L. Guo, G.L. Li: Ultrason. Sonochem. Vol. 15 (2008), p.43.

Google Scholar

[10] I. Marcio, M. Yukihiro, O. Fumio, S. Akihiko, T. Ichiro and S. Mikio: Water Res. Vol. 42(2008), p.1379.

Google Scholar

[11] S. Fındık and G. Guündüz: Ultrason. Sonochem. Vol. 14 (2007), p.157.

Google Scholar

[12] Y.T. Didenko, W.B. McNamara III and K.S. Suslick: J. Am. Chem. Soc. Vol. 121 (1999), p.5817.

Google Scholar

[13] B. Chen, X.K. Wang, C. Wang, W. Q Jiang and S.P. Li: Ultrason. Sonochem. Vol. 18 (2011), p.1091.

Google Scholar

[14] J. Wang, X. Wang, G. Li, P. Guo and Z. Luo: J. Hazard. Mater. Vol. 176 (2010), p.333.

Google Scholar

[15] N. Shimizu, C. Ogino, M. F. Dadjou and T. Murata: Ultrason. Sonochem. Vol. 14 (2007), p.184.

Google Scholar

[16] X.K. Wang, Y.C. Wei, C. Wang, W.L. Guo, J.G. Wang and J.X. Jiang: Separation and Purification Technology Vol. 81 (2011), p.69.

Google Scholar

[17] W.L. Guo, Y.H. Shi, H.Z. Wang, H. Yang and G.Y. Zhang: Ultrason. Sonochem. Vol. 17 (2010), p.680.

Google Scholar

[18] S.N. Su, W.L. Guo, C.L. Yi, Y.Q. Leng and Z.M. Ma: Ultrason. Sonochem. Vol. 19 (2012), p.469.

Google Scholar

[19] S.K. Ling, S.B. Wang and Y.L. Peng: J. Hazard. Mater. Vol. 178 (2010), p.385.

Google Scholar