First-Principles Study of Thin-Film Properties of Transition-Metal Oxide SrTcO3

Article Preview

Abstract:

The structural and electronic properties of fully-relaxed thin-film SrTcO3 are investigated using first-principles method. In contrast to the insulating property of the bulk SrTcO3, the thin-film SrTcO3 with a thickness of 8.06 Å is found to be nearly metallic with a very small band gap of 0.17 eV. Its band structure meets the demands of being thermoelectric material. Moreover, thin-film SrTcO3 is found to retain its bulk high magnetic ordering temperature(TN) property, which suggests that it is applicable in high ambient temperatures. Comparison of the electronic/magnetic property of thin-film and bulk SrTcO3 is performed to explore the origins of their different electrical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Cao, J. Wua, Materials Science and Engineering: R: Reports, . 71, (2011), Pages 35C52.

Google Scholar

[2] T. Qi, M.T. Curnan, S. Kim, J.W. Bennett, I. Grinberg, and A.M. Rappe, Phys. Rev. B 84 (2011) 245206.

Google Scholar

[3] E. E. Rodriguez, F. Poineau, A. Llobet, B.J. Kennedy, M. Avdeev, G. J. Thorogood, M. L. Carter, R. Seshadri, D. J. Singh, and A. K. Cheetham, Phys. Rev. Lett. 106 (2011) 067201.

Google Scholar

[4] C. -L. Ma, Y. Zhu, T. -C. Zang, X. -D. Wang, Phys. Lett. A 375 (2011) 3615-3617.

Google Scholar

[5] C. -L. Ma, T. -C. Zang, X. -D. Wang, Sci. China-Phys. Mech. Astron, 55 (2012) 1-5.

Google Scholar

[6] G. Gou, I. Grinberg, A.M. Rappe, and J.M. Rondinelli, Phys. Rev. B 84(14) (2011) 144101.

Google Scholar

[7] M. Stengel, D. Vanderbilt, and N.A. Spaldin, Nat. Mater. 8 (2009) 392.

Google Scholar

[8] W.A. Al-Saidi and A.M. Rappe, Phys. Rev. B 82 (2010) 155304.

Google Scholar

[9] G. Herranz, F. S´achez, B. Mart´ınez, J. Fontcuberta, M. V. Garc´ıa-Cuenca, C. Ferrater, M. Varela, and P. Levy, Eur. Phys. J. B 40 (2004) 439.

Google Scholar

[10] V. Garcia et al., Science 327 (2010) 1106.

Google Scholar

[11] P. E. Bl¨ochl, Phys. Rev. B 50 (1994) 17953-17979.

Google Scholar

[12] G. Kresse, J. Furthmller, Phys. Rev. B 54 (1996) 11169-11186.

Google Scholar

[13] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[14] V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, J. Phys.: Condens. Matter. 9 (1997) 767-808.

Google Scholar

[15] C. -M. Dai, C. -L. Ma, submitted to J. Phys.: Condens. Matter., (2013).

Google Scholar

[16] Fischer G, D¨ane M, Ernst A, et al. Exchange coupling in transition metal monoxides: Electronic structure calculations. Phys Rev B, 2009, 80(1): 014408.

Google Scholar

[17] Jones E D, Morosin B. Sign of the Nearest-Neighbor Exchange Interaction and its Derivative in GdAs. Phys Rev, 1967, 160(2): 451-454.

DOI: 10.1103/physrev.160.451

Google Scholar