A Far Field Measurement System Design for Light Emitting Devices

Article Preview

Abstract:

The key point of the proposed LED (light emitting device) optical field measurement system is to place the packaged or unpackaged LED on a stepping motor without any translation parts. Thus the mechanical aging effect and the maintenance problems of the traditional rotary part are avoided. Besides, the measurement sensors are fixed along a quarter arc of a circle with the LED at the center, so they can take both spectrum and energy output measurements along various aspect angles. The system has thirteen photo detector modules forming a 90° arch with a diameter of 63.2cm. Each module comprises eight photo-detectors, and each detector covers 0.9°. A stepping motor, placed at the center of the circle, rotates a LED under test through 360°with a step size of 1.8°. A powerful micro-controller (C8051-F020) is employed to control the 3-dimensional far field measurement flow for the data acquisition that bridges the photo-detector array modules and a personal computer. The communication between the personal computer and the data acquisition sub-system is through a RS232 interface. A fast, reliable, user-friendly measurement system has been achieved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2144-2147

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. S. Boyle and G. E. Smith, Bell Syst. Tech. J. Vol. 49 (1970), p.587.

Google Scholar

[2] R. W. Brodersen, D. D. Buss and S. F. Tasch, IEEE Trans. Electron Dev. Vol. ED-22 (1975), p.40.

Google Scholar

[3] M. J. Cantella, RCA Engineer, Vol. 27(1982).

Google Scholar

[4] B. R. Capone, R. W. Taylor and W. F. Kosonocky, Opt. Eng. Vol. 21 (1982), p.945.

Google Scholar

[5] J. E. Carnes, W. F. Kosonocky and E. G. Ramberg, IEEE J. Solid State Circuits, Vol. SC-6 (1971), p.322.

Google Scholar

[6] J. E. Carnes, W. F. Kosonocky and E. G. Ramberg, Trans. IEEE, Vol. ED-19 (1972), p.798.

Google Scholar

[7] J. E. Carnes and W. F. Kosonocky, Appl. Phys. Lett., Vol. 20 (1972), p.261.

Google Scholar

[8] J. E. Carnes and W. F. Kosonocky, RCA Review, Vol. 33 (1926), p.327.

Google Scholar

[9] W. S. Chan, Optical Spectra, Vol. 57-61 (1981).

Google Scholar

[10] R. A. Chapman, S. R. Borrello, Art Simmons, J. D. Beck, A. J. Lewis, M. A. Kinch, J. Hynecek and C. G. Roberts, IEEE Trans. Vol. ED-27 (1980), p.134.

DOI: 10.1109/t-ed.1980.19831

Google Scholar

[11] P. S. Considine, L. A. Lianza and B. M. Radi, Opt. Eng., Vol. 18 (1979), p.486.

Google Scholar

[12] B. E. Deal, IEEE Trans, Electron Devices, Vol. ED-27 (1980), p.606.

Google Scholar

[13] E. L. Dereniak, R. A. Bredthauer, E. M. Hicks, J. E. Vicars and R. A. Florence, Proc. SPIE, Staring IR Focal-Plane Tech., Vol. 267 (1981), p.9.

Google Scholar

[14] L. J. M. Esser and F. L. J. Sangster, Handbook on Semiconductors, C. Hilsum (2nd Ed. ). North Holland, Amsterdam, Vol. 4 (1981), p.335.

Google Scholar

[15] W. S. Ewing, F. D. Shepherd, R. W. Capps and E. L. Dereniak, SPIE, Vol. 331 (1982), p.19.

Google Scholar

[16] A. Fowler, P. Waddel and L. Mortara, SPIE, Vol. 290 (1981), p.2.

Google Scholar

[17] A. Gordon and G. Gordon, IEEE Trans. Elec. Devices, Vol. ED-12 (1965).

Google Scholar

[18] G. S. Hobson, Charge Transfer Devices, Wiley, New York, (1978).

Google Scholar

[19] M. Howes and D. V. Morgan (eds), Charge-Coupled Devices and Systems, Wiley Inter-science, Chichester, (1979).

Google Scholar

[20] J. Hynecek, IEEE. Trans. Elect. Dev., Vol. ED-28 (1981).

Google Scholar