Allelopathic Effects of the Dried Macroalga Ulva pertusa on the Photosynthetic Apparatus of Red Tide-Causing Microalga Skeletonema costatum as Probed by OJIP Chlorophyll a Fluorescence Measurements

Article Preview

Abstract:

Allelopathic effects of dried macroalga Ulva pertusa (Chlorophyta) on photosynthesis of the microalgae Skeletonema costatum (Bacillariophyta) were evaluated using coexistence culture systems. S. costatum was cultured with different biomass of dried U. pertusa under controlled laboratory conditions for three days. The chlorophyll a (Chl a) fluorescence transient O-J-I-P curve coupled with its specific parameters in S. costatum was established. The Chl a fluorescence transients were recorded in vivo at high time resolution and analyzed according to the JIP-test which can quantify photosystem II activity. A clear dose-dependent relationships were observed between the dried biomass of U. pertusa and its inhibitory effect on S. costatum. A decrease in the O-J-I-P curve expressed as Chl a fluorescence intensity along with its specific parameters were observed, which was also time-dependent. The main photosynthetic inhibitory targets of the macroalga on the microalga, according to the JIP-test, can be expressed as a decrease in the number of active reaction centers and the blocking of the electron transport chain. The results of the present study suggest that dried fragments of U. pertusa effectively inhibit photosynthesis in S. costatum.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2250-2254

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.M. Anderson: Nature Vol. 388 (1997), p.513.

Google Scholar

[2] C. Zinssmeister, S. Soehner, E. Facher, M. Kirsch, K.J.S. Meier, M. Gottschling: Systematics and Biodiversity Vol. 9(2011), p.145.

DOI: 10.1080/14772000.2011.586071

Google Scholar

[3] T. Sugawara, S. Taguchi, K, Hamasaki, T. Toda, T. Kikuchi: Hydrobiologia Vol. 493 (2003), p.17.

DOI: 10.1023/a:1025497817677

Google Scholar

[4] X.H. Cao, X.X. Song, Z.M. Yu: Chin. J. Environ. Sci. Vol. 25(2004) , p.148.

Google Scholar

[5] Y. Wang, B. Zhou, X.X. Tang: J. Appl. Phycol. Vol. 21 (2009), p.375.

Google Scholar

[6] Q. Jin, S.L. Dong: J. Exp. Mar. Biol. Ecol. Vol. 293 (2003), p.41.

Google Scholar

[7] Y.Z. Tang, C.J. Gobler: Harmful Algae Vol. 10 (2011), p.480.

Google Scholar

[8] Y. Wang, Z.M. Yu, X.X. Song, X.X. Tang, S.D. Zhang: Aquat. Bot. Vol. 86 (2007), p.139.

Google Scholar

[9] C.R. Nan, H.Z. Zhang, S.Z. Lin, G.Q. Zhao, X.Y. Liu: Aquat. Bot. Vol. 89 (2008), p.9.

Google Scholar

[10] M.Y. Oh, S.B. Lee, D.H. Jin, Y.K. Hong, H.J. Jin: J. Appl. Phycol. Vol. 22 (2010), p.453.

Google Scholar

[11] Y. Zhou, H. Yang, H. Hu, Y. Liu, Y.Z. Mao, H. Zhou: Aquaculture Vol. 252 (2006), p.264.

Google Scholar

[12] R.R.L. Guillard, In: Culture of marine animals, edtied by W.L. Smith, M.H. Chanley Publications/Plenum, NY(1975), p.26.

Google Scholar

[13] R.J. Strasser, A. Srivastava, Govindjee: Photochem. Photobiol. Vol. 61 (1995), p.32.

Google Scholar

[14] K.J. Appenroth, J. Stöckel, A. Srivastava, R.J. Strasser: Environ. Pollut. Vol. 115 (2001), p.49.

Google Scholar

[15] Y.Z. Tang, C.J. Gobler: Harmful Algae Vol. 10 (2011), p.480.

Google Scholar

[16] M.A. Alamsjah, S. Hirao, F. Ishibashi: J. Appl. Phycol. Vol. 20 (2008), p.713.

Google Scholar

[17] S. Wium-Andersen, U. Anthoni, C. Christophersen, G. Houen: Oikos. Vol. 39(1982), p.187.

DOI: 10.2307/3544484

Google Scholar

[18] H.M. Lu, H.H. Xie, Y. Gong, Q. Wang, Y.F. Yang: Biochem. Syst. Ecol. Vol. 4 (2011), p.397.

Google Scholar