Unified Hybrid Free Space Optical/Radio Frequency Communication System Based on Microwave Photonics

Article Preview

Abstract:

Hybrid free space optical/radio frequency communication systems improve reliability of links. However, independent communication subsystems increase the system complexity, weight, size, and power consumption. Based on microwave photonics, a unified hybrid free space optical/radio frequency communication system design is proposed. The communication subsystems share antenna, modulator, and demodulator to simplify system structure. Operating principle is expounded by theoretical reference, and 3dB theoretical loss is found in millimeter-wave communication mode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2706-2709

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Leitgeb, S. S. Muhammad, C. Chlestil, M. Gebhart, and U. Birnbacher, Reliability of FSO links in next generation optical networks, in 2005 7th International Conference on Transparent Optical Networks, ICTON 2005, July 3, 2005 - July 7, 2005, Barcelona, Catalonia, Spain, 2005, pp.394-401.

DOI: 10.1109/icton.2005.1505829

Google Scholar

[2] V. Kvicera, M. Grabner, and O. Fiser, Simulated terrestrial 850 nm/93 GHz hybrid system -attenuation due to hydrometeors and performance availability assessment, in Loughborough Antennas and Propagation Conference, LAPC 2009, November 16, 2009 - November 17, 2009, Loughborough, United kingdom, 2009, pp.321-323.

DOI: 10.1109/lapc.2009.5352491

Google Scholar

[3] I. I. Kim and E. Korevaar, Availability of Free Space Optics (FSO) and hybrid FSO/RF systems, in Optical Wireless Communications IV, August 21, 2001 - August 22, 2001, Denver, CO, United states, 2001, pp.84-95.

DOI: 10.1117/12.449800

Google Scholar

[4] S. Bloom and W. S. Hartley, Hybrid FSO Radio (HFR): Some preliminary results, in Optical Wireless Communications V, August 1, 2002, Boston, MA, United states, 2002, pp.143-154.

DOI: 10.1117/12.460578

Google Scholar

[5] J. C. Juarez, A. Dwivedi, A. R. Hammons Jr, S. D. Jones, V. Weerackody, and R. A. Nichols, Free-space optical communications for next-generation military networks, IEEE Communications Magazine, vol. 44, pp.46-51, (2006).

DOI: 10.1109/mcom.2006.248164

Google Scholar

[6] L. Stotts, L. Andrews, P. Cherry, J. Foshee, P. Kolodzy, W. McIntire, et al., Hybrid optical rf airborne communications, Proceedings of the IEEE, vol. 97, pp.1109-1127, (2009).

DOI: 10.1109/jproc.2009.2014969

Google Scholar

[7] T. Kamalakis, I. Neokosmidis, A. Tsipouras, T. Sphicopoulos, S. Pantazis, and I. Andrikopoulos, Hybrid free space optical / millimeter wave outdoor links for broadband wireless access networks, " in 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 07, September 3, 2007 - September 7, 2007, Athens, Greece, (2007).

DOI: 10.1109/pimrc.2007.4393998

Google Scholar

[8] G. Noreen, S. Shambayati, S. Piazzolla, R. Cesarone, K. Strauss, and F. Amoozegar, Low cost deep space hybrid optical/RF communications architecture, in 2009 IEEE Aerospace Conference, March 7, 2009 - March 14, 2009, Big Sky, MT, United states, (2009).

DOI: 10.1109/aero.2009.4839374

Google Scholar

[9] J. C. Franco, J. Rzasa, S. D. Milner, and C. C. Davis, Transmission of high definition imagery using hybrid FSO/RF links for real-time surveillance, event detection, and follow-up, in Free-Space Laser Communications VII, August 28, 2007 - August 30, 2007, San Diego, CA, United states, 2007, p. The International Society for Optical Engineering (SPIE).

DOI: 10.1117/12.739111

Google Scholar

[10] J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, Transmission of microwave-photonics generated 16Gbit/s super broadband OFDM signals in radio-over-fiber system, in OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, Febrary 24, 2008 - Febrary 28, 2008, San Diego, CA, United states, 2008, p. Aviza Technology.

DOI: 10.1109/ofc.2008.4528509

Google Scholar

[11] M. Wei , M. Huchard, A. Stohr, B. Charbonnier, S. Fedderwitz, and D. Jager, 60-ghz photonic millimeter-wave link for short-to medium-range wireless transmission up to 12. 5 gb/s, Lightwave Technology, Journal of, vol. 26, pp.2424-2429, (2008).

DOI: 10.1109/jlt.2008.927604

Google Scholar

[12] A. Hirata, A. Harada, and T. Nagatsuma, Multi-gigabit/s wireless links using millimeter-wave photonic techniques, " in Microwave Photonics, 2001. MWP , 01. 2001 International Topical Meeting on, 2002, pp.77-80.

DOI: 10.1109/mwp.2002.981800

Google Scholar

[13] A. Hirata, M. Harada, K. Sato, and T. Nagatsuma, Millimeter-wave photonic wireless link using low-cost generation and modulation techniques, in Microwave Photonics, 2002. International Topical Meeting on, 2002, pp.37-40.

DOI: 10.1109/mwp.2002.1158854

Google Scholar

[14] A. Hirata, T. Minotani, and T. Nagatsuma, Millimeter-wave photonics for 10-Gbit/s wireless links, in 2002 IEEE/LEOS Annual Meeting Conference Proceedings: 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, November 10, 2002 - November 14, 2002, Glasgow, United kingdom, 2002, pp.477-478.

DOI: 10.1109/leos.2002.1159388

Google Scholar

[15] A. Hirata, M. Harada, and T. Nagatsuma, 120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals, Lightwave Technology, Journal of, vol. 21, pp.2145-2153, (2003).

DOI: 10.1109/jlt.2003.814395

Google Scholar

[16] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, et al., 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp.1937-1944, (2006).

DOI: 10.1109/tmtt.2006.872798

Google Scholar

[17] A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, et al., Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies, Lightwave Technology, Journal of, vol. 26, pp.2338-2344, (2008).

DOI: 10.1109/jlt.2008.925641

Google Scholar

[18] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, and T. Nagatsuma, High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, Microwave Theory and Techniques, IEEE Transactions on, vol. 52, pp.1843-1850, (2004).

DOI: 10.1109/tmtt.2004.831581

Google Scholar