Predict the Tertiary Structure of Protein with Binary Tree and Ensemble Strategy

Article Preview

Abstract:

In this paper we intend to apply a new method to predict tertiary structure. Several feature extraction methods adopted are physicochemical composition, recurrence quantification analysis (RQA) , pseudo amino acid composition (PseAA) and Distance frequency. We construct the binary tree Classification model, and adopt flexible neural tree models as the classifiers. We will train a number of based classifiers through different features extraction methods for every node of binary tree, then employ the selective ensemble method to ensemble them. 640 dataset is selected to our experiment. The predict accuracy with our method on this data set is 63.58%, higher than some other methods on the 640 datasets. So, our method is feasible and effective in some extent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

3081-3085

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J. SVM-based method for subcellular localization of protein using multi-scale energy and pseudo amino acid composition Amino Acids, 33(1): 69-74 (2007).

DOI: 10.1007/s00726-006-0475-y

Google Scholar

[2] Giuliani, A, Sirabella, P., Benigni, R., Colosimo, A, 2000. Mapping protein sequence spaces by recurrence: a case study on chimeric structures. Protein Eng. 13, 671-678.

DOI: 10.1093/protein/13.10.671

Google Scholar

[3] Giuliani, A, Tomasi, M., 2002. Recurrence quantification analysis reveals interac-tion partners in paramyxoviridae envelope glycoproteins. Proteins 46, 171-176.

DOI: 10.1002/prot.10044

Google Scholar

[4] Marwan, N., Romano, M. e., Thiel, M., Kurths, 1, 2007. Recurrenceplots for the analysis of complex systems. Phys. Rep. 438, 237-329.

Google Scholar

[5] Deschavanne, P, Tuffe ' ry, P., 2008. Exploring an alignment free approach for protein classification and structural class prediction. Biochimie 90, 615-625.

DOI: 10.1016/j.biochi.2007.11.004

Google Scholar

[6] Fiser, A., Tusna 'dy, G. E, Simon, I. Chaos game representation of protein structures. J. Mol. Graphics 12, 302-304.

DOI: 10.1016/0263-7855(94)80109-6

Google Scholar

[7] Jianyi Yang, Zhenling Peng, et al. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. J. TheoL BioI. 2009, doi: 10. 1 OJ6/j. jtbi. 2008. 12. 027.

Google Scholar

[8] Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition,. Proteins: Struct Funct Genet, 43(3): 246-255 (2001).

DOI: 10.1002/prot.1035

Google Scholar

[9] Huang Y, Li Y D. Prediction of protein subcellular locations using fuzzy K-NN method,. Bioinformatics, 20 (1): 21-28 (2004).

DOI: 10.1093/bioinformatics/btg366

Google Scholar

[10] Thomas G. Dietterich G. Bakiri. Solving multiclass learning problems via Error-Correcting output codes,. Artificial Intelligence Research, (2): 263-286 (1995).

DOI: 10.1613/jair.105

Google Scholar

[11] LUO D F, JUN, XIONG RONG. Distance function learning in error-correcting output coding framework, [C]/ICON IP 2006 Proceeding of the 13th International Conference on Neural Information Proceeding LNCS 4233. Berlin: Springer-Berlag: 1-10 (2006).

DOI: 10.1007/11893257_1

Google Scholar

[12] Chen, Y., Yang, B., Dong, J., Nonlinear systems modelling via optimal design of neural trees. International Journal of Neural systems. 14, (2004) 125-138.

DOI: 10.1142/s0129065704001905

Google Scholar

[13] Chen, Y., Yang, B., Dong, J., Abraham A.: Time-series forecasting using flexible neural tree model. Information Science, Vol. 174, Issues 3/4, pp.219-235, (2005).

DOI: 10.1016/j.ins.2004.10.005

Google Scholar

[14] Chen, Y., Yang, B., Abraham A. Feature Selection and Classification using Flexible Neural Tree, Neurocomputing, 2006. (In press).

DOI: 10.1016/j.neucom.2006.01.022

Google Scholar

[15] Masulli F, Valentini G. Effectiveness of error correcting output codes in multiclass learning problems,. Lecture Notes in Computer Science 1857, 107-116 (2000).

DOI: 10.1007/3-540-45014-9_10

Google Scholar

[16] Chou, K.C., Zhang, C.T., 1995. Review: Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349.

Google Scholar

[17] Chen, C., Chen, L., Zou, X., Cai, P., 2009. Prediction of protein secondary structure content by using the concept of Chou's pseudo-amino acid composition and support vector machine. Protein Pept. Lett. 16, 27–31.

DOI: 10.2174/092986609787049420

Google Scholar

[18] Ke Chen, LUKASZ A. KURGAN, Jishou ruan. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Computational Chemistry. 2008, 29: 1596–1604.

DOI: 10.1002/jcc.20918

Google Scholar

[19] Wang ZX and Yuan Z: How good is the prediction of protein structural class by the component-coupled method? Pattern Recogn 2000, 38: 165–175.

DOI: 10.1002/(sici)1097-0134(20000201)38:2<165::aid-prot5>3.0.co;2-v

Google Scholar

[20] Kurgan LA and Homaeian L: Prediction of structural classes for protein sequences and domains-Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy. Pattern Recogn 2006, 39: 2323–2343.

DOI: 10.1016/j.patcog.2006.02.014

Google Scholar

[21] Kedarisetti KD, Kurgan LA and Dick S: Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 2006, 348: 981–988.

DOI: 10.1016/j.bbrc.2006.07.141

Google Scholar

[22] Pa'nek J,Eidhammer I,Aasland R.A new method for identification of protein (Sub) families in a set of proteins based on hydropathy di stribution in proteins.Proteins:Struct Funct Bioinformatics,2005,58:923—934.

DOI: 10.1002/prot.20356

Google Scholar

[23] Zhang Li,Liao Bo,Li Dachao,Zhu Wen.A novel representation for apoptosis protein subcellular localization prediction using support Vector machine.J Theor Bi01.2009,259:361-365.

DOI: 10.1016/j.jtbi.2009.03.025

Google Scholar

[24] Zhihua, Z., Jianxin, W., Wei, T.: Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239–263 (2002).

DOI: 10.1016/s0004-3702(02)00190-x

Google Scholar