[1]
Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J. SVM-based method for subcellular localization of protein using multi-scale energy and pseudo amino acid composition Amino Acids, 33(1): 69-74 (2007).
DOI: 10.1007/s00726-006-0475-y
Google Scholar
[2]
Giuliani, A, Sirabella, P., Benigni, R., Colosimo, A, 2000. Mapping protein sequence spaces by recurrence: a case study on chimeric structures. Protein Eng. 13, 671-678.
DOI: 10.1093/protein/13.10.671
Google Scholar
[3]
Giuliani, A, Tomasi, M., 2002. Recurrence quantification analysis reveals interac-tion partners in paramyxoviridae envelope glycoproteins. Proteins 46, 171-176.
DOI: 10.1002/prot.10044
Google Scholar
[4]
Marwan, N., Romano, M. e., Thiel, M., Kurths, 1, 2007. Recurrenceplots for the analysis of complex systems. Phys. Rep. 438, 237-329.
Google Scholar
[5]
Deschavanne, P, Tuffe ' ry, P., 2008. Exploring an alignment free approach for protein classification and structural class prediction. Biochimie 90, 615-625.
DOI: 10.1016/j.biochi.2007.11.004
Google Scholar
[6]
Fiser, A., Tusna 'dy, G. E, Simon, I. Chaos game representation of protein structures. J. Mol. Graphics 12, 302-304.
DOI: 10.1016/0263-7855(94)80109-6
Google Scholar
[7]
Jianyi Yang, Zhenling Peng, et al. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. J. TheoL BioI. 2009, doi: 10. 1 OJ6/j. jtbi. 2008. 12. 027.
Google Scholar
[8]
Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition,. Proteins: Struct Funct Genet, 43(3): 246-255 (2001).
DOI: 10.1002/prot.1035
Google Scholar
[9]
Huang Y, Li Y D. Prediction of protein subcellular locations using fuzzy K-NN method,. Bioinformatics, 20 (1): 21-28 (2004).
DOI: 10.1093/bioinformatics/btg366
Google Scholar
[10]
Thomas G. Dietterich G. Bakiri. Solving multiclass learning problems via Error-Correcting output codes,. Artificial Intelligence Research, (2): 263-286 (1995).
DOI: 10.1613/jair.105
Google Scholar
[11]
LUO D F, JUN, XIONG RONG. Distance function learning in error-correcting output coding framework, [C]/ICON IP 2006 Proceeding of the 13th International Conference on Neural Information Proceeding LNCS 4233. Berlin: Springer-Berlag: 1-10 (2006).
DOI: 10.1007/11893257_1
Google Scholar
[12]
Chen, Y., Yang, B., Dong, J., Nonlinear systems modelling via optimal design of neural trees. International Journal of Neural systems. 14, (2004) 125-138.
DOI: 10.1142/s0129065704001905
Google Scholar
[13]
Chen, Y., Yang, B., Dong, J., Abraham A.: Time-series forecasting using flexible neural tree model. Information Science, Vol. 174, Issues 3/4, pp.219-235, (2005).
DOI: 10.1016/j.ins.2004.10.005
Google Scholar
[14]
Chen, Y., Yang, B., Abraham A. Feature Selection and Classification using Flexible Neural Tree, Neurocomputing, 2006. (In press).
DOI: 10.1016/j.neucom.2006.01.022
Google Scholar
[15]
Masulli F, Valentini G. Effectiveness of error correcting output codes in multiclass learning problems,. Lecture Notes in Computer Science 1857, 107-116 (2000).
DOI: 10.1007/3-540-45014-9_10
Google Scholar
[16]
Chou, K.C., Zhang, C.T., 1995. Review: Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349.
Google Scholar
[17]
Chen, C., Chen, L., Zou, X., Cai, P., 2009. Prediction of protein secondary structure content by using the concept of Chou's pseudo-amino acid composition and support vector machine. Protein Pept. Lett. 16, 27–31.
DOI: 10.2174/092986609787049420
Google Scholar
[18]
Ke Chen, LUKASZ A. KURGAN, Jishou ruan. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Computational Chemistry. 2008, 29: 1596–1604.
DOI: 10.1002/jcc.20918
Google Scholar
[19]
Wang ZX and Yuan Z: How good is the prediction of protein structural class by the component-coupled method? Pattern Recogn 2000, 38: 165–175.
DOI: 10.1002/(sici)1097-0134(20000201)38:2<165::aid-prot5>3.0.co;2-v
Google Scholar
[20]
Kurgan LA and Homaeian L: Prediction of structural classes for protein sequences and domains-Impact of prediction algorithms, sequence representation and homology, and test procedures on accuracy. Pattern Recogn 2006, 39: 2323–2343.
DOI: 10.1016/j.patcog.2006.02.014
Google Scholar
[21]
Kedarisetti KD, Kurgan LA and Dick S: Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 2006, 348: 981–988.
DOI: 10.1016/j.bbrc.2006.07.141
Google Scholar
[22]
Pa'nek J,Eidhammer I,Aasland R.A new method for identification of protein (Sub) families in a set of proteins based on hydropathy di stribution in proteins.Proteins:Struct Funct Bioinformatics,2005,58:923—934.
DOI: 10.1002/prot.20356
Google Scholar
[23]
Zhang Li,Liao Bo,Li Dachao,Zhu Wen.A novel representation for apoptosis protein subcellular localization prediction using support Vector machine.J Theor Bi01.2009,259:361-365.
DOI: 10.1016/j.jtbi.2009.03.025
Google Scholar
[24]
Zhihua, Z., Jianxin, W., Wei, T.: Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239–263 (2002).
DOI: 10.1016/s0004-3702(02)00190-x
Google Scholar