[1]
Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F., Prediction of Protein Function Using Protein–protein Interaction Data, Journal of computational biology, 2003, p.947–960.
DOI: 10.1089/106652703322756168
Google Scholar
[2]
C.H. Song, F. Shi, Prediction of Protein Subcellular Localization Based on Hilbert-Huang Transform, Wuhan university journal of natural sciences, 2012, pp.048-054.
DOI: 10.1007/s11859-012-0803-x
Google Scholar
[3]
Cedano J, Aloy P, P'erez-Pons JA, Querol E, Relation between amino acid composition and cellular location of proteins, J mol biol, 1997, p.594–600.
DOI: 10.1006/jmbi.1996.0804
Google Scholar
[4]
K.C. Chou, Y.D. Cai, Using functional domain composition and support vector machines for predictionof protein subcellular location, J Biol Chem, 2002, p.45765–45769.
DOI: 10.1074/jbc.m204161200
Google Scholar
[5]
K.C. Chou, H.B. Shen, Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization, Biochem Biophys Res Commun, 2006, pp.150-157.
DOI: 10.1016/j.bbrc.2006.08.030
Google Scholar
[6]
Z.H. Zhang, Z.H. Wang, Z.R. Zhang, Y.X. Wang , A novel methodfor apoptosis protein subcellular localization prediction combin-ing encoding based on grouped weight and support vector machine, FEBS Lett. 2006, p.6169–6174.
DOI: 10.1016/j.febslet.2006.10.017
Google Scholar
[7]
Y.L. Chen, Q.Z. Li, Prediction of the subcellular location of apoptosis proteins, J Theor Biol, 2007, p.775–783.
Google Scholar
[8]
Y.L. Chen, Q.Z. Li, Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition, J Theor Biol, 2007, p.377–381.
DOI: 10.1016/j.jtbi.2007.05.019
Google Scholar
[9]
F.M. Li, Q.Z. Li, Using pseudo amino acid composition to predict protein subcellular location with improved hybrid approach, Amino Acid, 2008, p.119–125.
DOI: 10.1007/s00726-007-0545-9
Google Scholar
[10]
Lili GUO, Yuehui Chen, Predicting protein subcellular localization by fusing binary tree and error-correcting output coding, ICIC2012, LNCS7389. 2012, 168-173.
DOI: 10.1007/978-3-642-31588-6_22
Google Scholar
[11]
Z.D. Lei, Y. Dai, An SVM-based system for predicting protein subcellular localizations, BMC Bioinf ormatics, 2005, pp.291-298.
Google Scholar
[12]
W.L. Huang, C.W. Tung, H.L. Huang, ProLoc: Prediction of protein subcellular localization using SVM with automatic selection from physicochemical composition features, BioSystems, 2007. doi: 10. 1016/j. biosystems. 2007. 01. 001.
DOI: 10.1016/j.biosystems.2007.01.001
Google Scholar
[13]
Shen HB, Chou KC, Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition, Biochem Biophys Rec Commun, pp.752-756.
DOI: 10.1016/j.bbrc.2005.09.117
Google Scholar
[14]
Mundra P, Kumar KK, Jayaraman VK, Kulkami BD, Using psedo amino acid composition to predict protein subnuclear localization: approached with PSSM, Pattern Recognit Lett28, pp.1610-1615.
DOI: 10.1016/j.patrec.2007.04.001
Google Scholar
[15]
Xiaoying Jiang, Rong Wei, Yanjun Zhao, Tongliang Zhang, Using Chou's pseudo amino acid composition based on approximate entropy and ensemble of AdaBoost classifiers to predict protein subnuclear location, Amino Acids, 2008, pp.669-675.
DOI: 10.1007/s00726-008-0034-9
Google Scholar