Delay-Dependent Stochastic Stability Analysis of Singular Hybrid System

Article Preview

Abstract:

The problem of Stochastic stability analysis for singular time-delay hybrid system with Markovian jumping parameters and standard Wiener process in this paper. Based on linear matrix inequality approach, a delay dependent condition is proposed, which ensures the singular hybrid system is stochastically stable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

504-507

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Feng,X. Zhu,Q. Zhang. Delay-dependent Stability Criteria for Singular Time-delay Systems. Acta Automatica Sinica, 36(3): 433-437, (2010).

DOI: 10.3724/sp.j.1004.2010.00433

Google Scholar

[2] X. Sun,Q. Zhang,C. Yang, et al. Delay-dependent Stability Analysis and Stabilization of Discrete-time Singular Delay Systems. Acta Automatica Sinica, 36(10): 1477-1483, (2010).

DOI: 10.3724/sp.j.1004.2010.01477

Google Scholar

[3] S. Ma, C. Zhang, Z. Wu. Delay-dependent Stability and Control for Uncertain Discrete Switched Singular Systems with Time-delay. Applied Mathematics and Computation, 206(1): 413-424, (2008).

DOI: 10.1016/j.amc.2008.09.020

Google Scholar

[4] Q. Han. Absolute Stability of Time-delay Systems with Sector-bounded Nonlinearity. Automatica, 41(12): 2171-2176, (2005).

DOI: 10.1016/j.automatica.2005.08.005

Google Scholar

[5] Y. Xia,E. Boukas,P. Shi, et al. Stability and Stabilization of Continuous-time Singular Hybrid Systems. Automatica, 45(6): 1504-1509, (2009).

DOI: 10.1016/j.automatica.2009.02.008

Google Scholar

[6] Z. Wu,H. Su,J. Chu. Robust Exponential Stability of Uncertain Singular Markovian Jump Time-delay Systems. Acta Automatica Sinica, 36(4): 558-563, (2010).

DOI: 10.3724/sp.j.1004.2010.00558

Google Scholar

[7] Y. Zhang,C. Liu,X. Mu. Robust Finite-time H∞ Control of Singular Stochastic Systems Via Static Output Feedback. Applied Mathematics and Computation, 218(9): 5629-5640, (2012).

DOI: 10.1016/j.amc.2011.11.057

Google Scholar

[8] S. Long,S. Zhong,Z. Liu. Stochastic Admissibility for a Class of Singular Markovian Jump Systems with Mode-dependent Time Delays. Applied Mathematics and Computation, 219(8): 4106-4117, (2012).

DOI: 10.1016/j.amc.2012.10.058

Google Scholar

[9] J. Lin,S. Fei. Robust Exponential Admissibility of Uncertain Switched Singular Time-delay Systems. Acta Automatica Sinica, 36(12): 1773-1779, (2010).

DOI: 10.3724/sp.j.1004.2010.01773

Google Scholar

[10] Y. Ding,H. Zhu,S. Zhong, et al. Exponential Mean-square Stability of Time-delay Singular Systems with Markovian Switching and Nonlinear Perturbations. Applied Mathematics and Computation, 219(4): 2350-2359, (2012).

DOI: 10.1016/j.amc.2012.08.067

Google Scholar

[11] S. Long,S. Zhong,Z. Liu. H∞ Filtering for a Class of Singular Markovian Jump Systems with Time-varying Delay. Signal Processing, 92(11): 2759-2768, (2012).

DOI: 10.1016/j.sigpro.2012.05.013

Google Scholar

[12] E. Boukas. Stabilization of Stochastic Singular Nonlinear Hybrid Systems. Nonlinear Analysis: Theory, Methods & Applications , 64(2): 217-228, (2006).

DOI: 10.1016/j.na.2005.05.066

Google Scholar